NEOADJUVANT CHEMORADIOOTHERAPY AND POSTOPERATIVE DIGESTIVE FISTULA

Amália Cinthia Meneses do Rêgo¹, Irami Araújo-Filho²

1. Institute of Teaching, Research, and Innovation, Liga Contra o Câncer – Natal – Brazil; ORCID: https://orcid.org/0000-0002-0575-3752; Full Professor of the Postgraduate Program in Biotechnology at Potiguar University, Potiguar University (UnP) – Natal/RN - Brazil. E-mail: regoamalia@gmail.com;
2. Institute of Teaching, Research, and Innovation, Liga Contra o Câncer – Natal – Brazil; ORCID: https://orcid.org/0000-0003-2471-7447; Full Professor of the Postgraduate Program in Biotechnology at Potiguar University (UnP) – Natal/RN - Brazil. Full Professor, Department of Surgery, Potiguar University. Ph.D. in Health Science/ Natal-RN - Brazil. E-mail: irami.filho@uol.com.br

Submitted: mar 20; accepted after revision, jul 06, 2024.

ABSTRACT

The pivotal role of neoadjuvant chemotherapy and radiotherapy in enhancing the management of gastrointestinal cancers is incontrovertible. However, their implications for surgical outcomes, particularly the risk of postoperative anastomotic fistulas, necessitate comprehensive analysis. This review examines the intricate relationship between neoadjuvant treatments and anastomotic fistula formation across a spectrum of gastrointestinal cancers, integrating findings from diverse clinical studies to elucidate risk factors and potential mitigation strategies. The timing and duration of neoadjuvant therapy emerge as critical considerations, with evidence suggesting that optimized intervals between therapy completion and surgical intervention may significantly influence fistula risk. Furthermore, patient-specific factors, including underlying health conditions and tumor characteristics, are highlighted as influential in determining fistula susceptibility. Through synthesizing current research, this review aims to guide clinical decision-making by providing insights into the balancing act of maximizing oncological efficacy while minimizing surgical complications. Future directions call for tailored treatment approaches, incorporating individual risk profiles and emerging therapeutic modalities to enhance patient outcomes in the neoadjuvant setting.
INTRODUCTION

The integration of neoadjuvant therapies, including chemotherapy and radiotherapy, into the treatment paradigms for gastrointestinal cancers such as gastric, colorectal, and pancreatic malignancies has been a significant advancement in oncology. These treatments aim to downstage tumors, increase resectability rates, and improve overall survival. However, the impact of neoadjuvant therapy on postoperative outcomes, particularly the development of anastomotic fistulas, remains a subject of considerable debate and investigation.

Anastomotic fistula formation is one of the most dreaded complications in gastrointestinal surgery, associated with increased morbidity, prolonged hospitalization, and even mortality. The risk factors for anastomotic fistulas are multifaceted, including patient-related factors, surgical technique, and preoperative treatment modalities.

Neoadjuvant chemotherapy and radiotherapy have been scrutinized for their potential role in compromising anastomotic healing and integrity, possibly increasing the risk of fistula formation. The incidence rate of anastomotic fistulas among patients undergoing surgery for gastrointestinal cancers varies widely, depending on several factors, including the type of cancer, surgical technique, and patient-related factors. For colorectal surgeries, the reported incidence of anastomotic leakage can range from 3% to 15%. The variation in incidence rates is due to differences in study populations, definitions of anastomotic fistula, and surgical procedures.

The optimal timing and duration of neoadjuvant chemotherapy and radiotherapy are subjects of ongoing research and debate. Generally, a waiting period of 6-8 weeks between the completion of neoadjuvant treatment and surgery is recommended for colorectal cancer to maximize tumor downstaging and potentially improve resectability and oncological outcomes. However, the optimal interval may vary based on the individual patient’s response to treatment, type of malignancy, and specific neoadjuvant therapy regimens. Clinical trials and meta-analyses are continuously evaluating these parameters to refine recommendations.

Several patient demographics and clinical characteristics may influence the risk of anastomotic fistula formation. These factors include but are not limited to patient age, nutritional status, comorbidities (such as diabetes mellitus), smoking status,
Neoadjuvant Chemoradiotherapy and Postoperative Digestive Fistula
Rego ACM, Araujo-Filho I

preoperative radiation therapy, the extent of the tumor, and the specific location of the cancer within the gastrointestinal tract13-15. Patients with poor nutritional quality, advanced age, or those receiving higher doses of preoperative radiation may have a higher risk of complications, including fistula formation. Tailoring neoadjuvant therapy and surgical approaches to account for these risk factors is crucial for minimizing postoperative complications8.

From the perspective of radiotherapy, the rationale for its neoadjuvant use lies in its ability to reduce tumor size and control microscopic disease, thus facilitating surgical resection with negative margins4. Nonetheless, radiation induces local tissue changes, including fibrosis and vascular damage, which may impair tissue oxygenation and healing processes essential for anastomotic healing16-18.

Similarly, neoadjuvant chemotherapy aims to reduce the tumor burden and address micrometastatic disease. While systemic treatment can achieve tumor downstaging, the cytotoxic effects on rapidly dividing cells, including those crucial for wound healing, raise concerns about its impact on surgical outcomes, particularly in the delicate balance of anastomotic healing19-21.

Evidence from clinical trials and retrospective studies offers mixed insights. Some reports suggest an increased incidence of anastomotic fistulas following neoadjuvant therapy, while others find no significant difference when compared to surgery alone12,13. This discrepancy underscores the complexity of factors at play, including variations in chemotherapy regimens, radiation doses, and timing of surgery, all of which may influence outcomes differently22,23.

Furthermore, the heterogeneity of patient populations, tumor characteristics, and surgical techniques across studies complicates the direct comparison and generalization of results14. As such, understanding the specific contexts in which neoadjuvant therapy may elevate the risk of fistula formation is crucial24-26.

Emerging data suggests that the interval between neoadjuvant treatment and surgery, the specific agents used in chemotherapy, and the total dose and field of radiation may all play critical roles in influencing anastomotic healing20. Optimizing these parameters could mitigate fistula risk while preserving neoadjuvant therapy's oncologic benefits5-7.

In addition to these treatment-related factors, the role of surgical techniques and advancements in perioperative care must not be overlooked. Minimally invasive approaches, enhanced recovery protocols, and vigilant postoperative monitoring may all contribute to minimizing the risk of anastomotic complications27-29.

Given the importance of balancing oncologic efficacy with postoperative safety, further research is warranted to delineate the optimal neoadjuvant treatment strategies that minimize the risk of anastomotic fistulas18-20. Prospective trials with standardized
treatment protocols and comprehensive outcome measures are essential to clarify the complex relationship between neoadjuvant therapy and postoperative complications30-
32.

In this sense, while neoadjuvant chemotherapy and radiotherapy have transformed the treatment landscape for gastrointestinal cancers, their impact on anastomotic integrity remains a critical concern23-25. As the field progresses, a nuanced understanding of the interplay between tumor biology, treatment modalities, and surgical technique will be paramount in optimizing patient outcomes33.

The objective of the review article is to critically evaluate the impact of neoadjuvant chemotherapy and radiotherapy on the risk of postoperative anastomotic fistula formation in patients undergoing surgery for gastrointestinal cancers, including gastric, colorectal, and pancreatic malignancies13. It aims to explore the complex interplay between neoadjuvant treatment modalities, surgical techniques, and patient outcomes, focusing on the incidence of anastomotic fistulas34.

The review seeks to synthesize current evidence to offer insights into optimizing treatment protocols that balance the oncological benefits of neoadjuvant therapy with the imperative to minimize postoperative complications26. Through a detailed examination of factors such as the timing of surgery post-neoadjuvant treatment, chemotherapy regimens, radiation doses, and the advancements in surgical approaches and perioperative care, the article strives to provide guidance for clinical practice and highlight areas requiring further research35.

METHODS

The research methodology involved a comprehensive search of multiple reputable databases to ensure the inclusion of relevant studies while minimizing the risk of bias. PubMed, Scopus, Scielo, Embase, and Web of Science were chosen due to their comprehensive coverage of peer-reviewed literature in the medical field. Additionally, Google Scholar was utilized to access gray literature, which often includes valuable insights not found in traditional peer-reviewed articles. The study's selection criteria were centered on the study's focus, which was Neoadjuvant Chemoradiotherapy and Postoperative Digestive Fistula. To refine the search and capture relevant studies, a combination of keywords was used, including “neoadjuvant therapy”, “neoadjuvant chemoradiotherapy”, “digestive system fistula”, “postoperative complications”, and surgical oncology. This approach ensured that the selected studies were directly related to the topic of interest. The inclusion criteria encompassed various studies, such as systematic reviews, case-control studies, cross-sectional studies, case series, and review articles. This broad inclusion criteria aimed to gather a comprehensive range of evidence and perspectives on the subject matter. The process of analysis, review, and selection of materials was conducted rigorously to maintain the quality and relevance of the chosen studies. It involved a systematic and blinded approach, with pairs of reviewers.
independently assessing the title and abstract of each study. In cases of disagreement between the two reviewers, a third reviewer was involved to reach a consensus and ensure the final selection of studies was based on well-founded criteria. This meticulous research methodology guarantees that the findings and conclusions drawn in the article are rooted in a robust and diverse body of evidence, enhancing the credibility and reliability of the study's outcomes.

RESULTS AND DISCUSSION

This review article centers on the intricate balance between maximizing oncological outcomes through neoadjuvant therapy and minimizing the risk of postoperative complications, specifically anastomotic fistulas, in patients undergoing surgery for gastrointestinal cancers. The synthesis of current evidence from clinical trials and retrospective studies provides a nuanced understanding of the factors contributing to optimizing treatment protocols.

The application of neoadjuvant therapy in gastrointestinal cancers has been increasingly recognized for its potential to improve surgical outcomes and oncological efficiency. This review synthesizes evidence from clinical trials and retrospective studies, highlighting the delicate balance between achieving maximal oncological benefit and minimizing postoperative complications, specifically anastomotic fistulas.

Our findings suggest that while neoadjuvant therapy can significantly downstage tumors and increase resectability rates, the timing of surgery post-neoadjuvant treatment, specific chemotherapy regimens, radiation doses, and advances in surgical techniques and perioperative care play critical roles in patient outcomes.

One of the pivotal considerations in optimizing treatment protocols is the timing of surgery following neoadjuvant therapy. Evidence suggests that an interval of 6-8 weeks allows for maximum tumor regression while minimizing the risk of complications.

However, the optimal interval might vary based on tumor location, patient health status, and specific neoadjuvant regimens. Further research is needed to identify tailored timing protocols that consider these variables.

Chemotherapy regimens and radiation doses have also been extensively studied. The toxicity associated with specific chemotherapeutic agents and higher doses of radiation can adversely affect tissue integrity, potentially increasing the risk of anastomotic fistulas.

Therefore, identifying regimens that maintain oncological efficacy while reducing toxicity is essential. Personalized medicine, including genetic profiling of tumors, may offer pathways to more personalized and less harmful treatment approaches.

Advancements in surgical techniques, including minimally invasive procedures, have shown promise in reducing postoperative complications. Techniques such as total...
mesorectal excision have revolutionized the surgical management of rectal cancer, offering improved margins and lymph node retrieval with reduced morbidity. Additionally, enhanced recovery after surgery (ERAS) protocols have significantly improved postoperative outcomes by optimizing perioperative care.

Optimizing neoadjuvant therapy protocols is multifaceted and underscores the importance of a multidisciplinary approach. Collaboration among oncologists, surgeons, radiologists, and other healthcare professionals is crucial for developing and implementing practical and safe treatment plans.

Patient demographics and clinical characteristics, such as nutritional status, comorbid conditions, and smoking history, are critical factors influencing the risk of postoperative complications. These factors necessitate a multidisciplinary approach to preoperative assessment and optimization, highlighting the importance of tailoring neoadjuvant therapy and surgical plans to individual patient profiles.

The role of neoadjuvant therapy in the era of precision medicine cannot be overstated. As our understanding of molecular oncology expands, the potential for targeted therapies to complement traditional neoadjuvant treatments becomes increasingly apparent. Such approaches could further refine the balance between treatment efficacy and preserving patient quality of life by reducing the incidence of debilitating complications.

Despite these advancements, significant challenges remain. The heterogeneity of gastrointestinal cancers, variability in patient responses to treatment, and the complexity of managing postoperative complications require ongoing research. Multicenter, randomized controlled trials are essential to develop standardized protocols that can be universally applied while allowing individual patient considerations.

Areas requiring further research have been highlighted throughout this discussion. Future studies should aim to refine the timing and sequencing of neoadjuvant therapies, explore the potential of targeted therapies and immunotherapies in the neoadjuvant setting, and investigate the impact of novel surgical techniques and technologies on postoperative outcomes.

CONCLUSION

In conclusion, the body of evidence underscores the complex interplay between neoadjuvant therapy, comprising chemotherapy and radiotherapy, and the subsequent risk of postoperative anastomotic fistulas in patients undergoing surgery for gastrointestinal cancers.

While neoadjuvant therapy undeniably offers a significant oncological benefit by downstaging tumors and improving resectability, it is also associated with an increased risk of complications, including anastomotic leakage. The timing between the
completion of neoadjuvant treatment and surgical intervention emerges as a critical factor, with an optimal window that minimizes the risk of fistulas while preserving the oncological advantages of therapy.

Additionally, patient-specific factors such as nutritional status, comorbidities, and the inherent biological behavior of the tumor significantly influence the risk profile for developing postoperative complications. Advanced surgical techniques and meticulous perioperative care, including careful patient selection and optimization, are paramount in mitigating these risks.

Future research should refine neoadjuvant regimens and surgical protocols to tailor treatment more precisely to individual patient characteristics and tumor biology. Ultimately, achieving a balance between maximizing oncological outcomes and minimizing postoperative morbidity will require a multidisciplinary approach underpinned by evidence-based guidelines that are continually updated as new data emerges.

REFERENCES

36. Hayashi M, Yoshikawa T, Yura M, Otsuki S, Yamagata Y, Morita S, Katai H, Nishida T. Predictive value of the surgical Apgar score on postoperative complications in advanced gastric cancer patients treated with neoadjuvant chemotherapy followed

