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Translating Lukasiewicz’s logics into
Classical Logic: a grade of difficulty

Hércules Araiijo Feitosa’

Resumo

Neste trabalho sdo vistos alguns conceitos sobre as tradugdes
entre logicas e uma breve revisdo sobre as logicas de
Lukasiewicz. Entdo, como resultado central, mostra que nio
existe qualquer tradugdo esquematica das logicas proposicionais
de Lukasiewicz na logica proposicional classica. Desta maneira,
pode ser avaliado o qudo dificil é encontrar uma tal tradugio.

Introduction

The use of functions between logics in order to obtain some
logical results has been developed since the beginning of the
20th century as we can see in several books and articles on logic
such as Feitosa, D’Ottaviano (2000) or D’Ottaviano, Feitosa,
(1999b) and others mentioned in the bibliography. But the idea
of constructing a theory of such functions is not so old. The
theory of translation between logics intends to analyze logical
properties having these functions as tools.

In general it is not very difficult to get a translation or
better a conservative translation from the classical calculus into
some other calculus, but the inverse of this result is always
hard. In this work we will consider this problem associated to
Lukasiewicz’s calculi. In D’Ottaviano, Feitosa, (1999 a) we see
a family of conservative translations from the -classical
propositional calculus (CPC) into the n-valued Lukasiewicz’s
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calculi (L,), for each n € . In Feitosa, Baar (200_) it is shown
that, using facts about algebraic semantic, there is a
conservative translation for each case. But this is a non-
constructive result.

So, in Section 3, we will present a result that shows us a
high grade of complexity for generating those functions. It can
give us some idea about how difficult is to translate
conservatively Lukasiewicz’s logics into classical logic, even in
the propositional case.

1. The translations

Now we are going to review some basic concepts about a
theory of translation between logics.

A consequence operator over E is a mapping C: P(E) —»
p(E) such that, for every A, B c E:

DHAcCA)
(i) AcB=C(A)cC(B)
(iii) C(C(A)) = C(A).

Certainly, for every consequence operator C, through (i)
and (iii), we have the equality C(C(A)) = C(A). Sometimes the
consequence operator is named “closure operator”.

A consequence operator C over E is finitary if for every
A cE, C(A) =U{C(Ay) / A is a finite subset of A}.

Let C be a consequence operator over E. A set A is
closed in E if C(A) = A, and A is open if the complement of A,
denoted by CA, is closed. An element x € E is dense in E if
C({x})=E.

A logic or deductive system is a pair L = (L, C), where L
is any set (the domain) and C is a consequence operator over L.

Well, besides this very general construction about logics
without a subjacent formal language, connectives and others
specific logical symbols, when we are working with logical
calculus we usually have in our minds all these elements. Thus,

Principios =~ UFRN Natal v.8 n. 10 p.109-120 Jul/dez. 2001



111
let us try even in a general way to retrieve some of those
elements in our theory.

Considering a formal language L, let For(L) be the
defined set of formulas of L. A consequence operator over L
has as domain the set For(L).

Given a formal language L, let us consider the free
algebra of formulas of L, which is generated by the set of
atomic formulas also denoted by For(L). A replacing is an
endomorphism s on For(L), that is, s € Hom(For(L), For(L)).

Let L be a formal language, s € Hom(For(L), For(L))
and C a consequence operator over L. The consequence
operator C is structural if sC(") < C(s(I")), for every ' <
For(L). The operator C is standard if C is structural and
finitary.

The concept of logical system permits us to characterize
particular cases of logics, which we can claim that the operator
is finitary, structural or standard.

A logical system defined over L is a pair L. = (L, C),
where L is a formal language and C is a consequence operator
over L.

If L is a logical system, the set For(L) is also denoted by
For(L). Let L. = (L, €) be a logical system and A c For(L), a
theory A of L is a closed set in L.

C(D) and For(L) are, for sure, the smallest and biggest
theories respectively associated to the consequence operator C.
An element of the theory A of L is named a theorem of A. As a
theorem of I, we mean a theorem of C(J). The set of theorems
of L is denoted Teo(L) = {a / a € C(J)}.

After these initial concepts about the logical systems we
can give a definition of translation between such systems, which
have been named Tarski’s logical systems.

Let L, and L, be two logical systems. A franslation from
L, to L, is a mapping T: L; — L, such that for every subset of
formulas 'v{a} < For(L)):

a € C\(I") = T(a) € C(T(D)).
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For logical systems with correct deductibility, that is, o
C(I') & I' |- a, the function T is a translation if and only if:

I' |- a= T)]-L, T(a).

As from set theory we have T(J) = J, considering I' = &
every translation takes theorems of L, into theorems of L,, that
is:

I-L1 a= I-L2 T((l)
Proposition 1.1: A mapping T: L; — L, is a translation iff
T(C (")) c CAT)), for every I = For(L;) , with T(') = {T(a)
/o eT}.
Theorem 1.2: Let T: L; — L; be a mapping between logical
systems. The following sentences are equivalent:

(i) T is a translation

(i1) the inverse image of a closed set is a closed set

(iii) the inverse image of an open set is an open set.

A mapping is closed if the image of every closed set is
still a closed set. A conservative mapping from the logical
system L, into the logical system L, is a function f: L, — L,
such that for every formula a of L;:

|-L1 a <= |-L2 f((l)

A conservative translation is a mapping T from L, into
Ly, such that for every set 'U{a} < For(L,):

a € C(IN) < T(a) € CTI)). In the logical systems
with correct deductibility a function T is a conservative
translation iff:

-1 a < T(D)|-L, T(a).

Two logical systems L, and L, are L-homeomorphics if
there is a bijective function T: L, — L, such that T and T are
translations. In that case, the function T is named an L-
homeomorphism.

Proposition 1.3: Let T: L; — L, be a bijection. Then T is an L-

homeomorphism iff T(C,(a)) = Cx(T(a)), for every a <
For(L)).
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Proposition 1.4: Let T: L, — L, be a function between logical
systems. Then T is an L-homeomorphism iff T is a conservative
and bijective translation.

Let us consider that L, is a language with only unary and
binary connectives and such that 6y, 61, 03, ... denote the atomic
formulas of L,. Now, let L, be another language, so a mapping
f: L, = L, is schematic if exists schemes® A, Bg, Cy of L, such
that:

(i) f(o) = A(o), for every atomic formula of L;;

(i1) f(&a) = Bg(f(a)), for each unary connective & of L;;

(iil) fla#P) = C=(f(w), f(P)), for each binary connective
of L].

A schematic mapping is a homomorphism between
languages because it preserves the algebraic structure of the
algebra of formulas associated with the respective languages.

A schematic mapping is literal if it translates each
connective in itself, that is, f(&a) = &f(a) and fla#f) =
flo)=f(B). The function T is a schematic translation if T is a
translation and schematic mapping.

2. About Lukasiewicz’s logics

The Lukasiewicz’s logics were initially introduced in
1920 and 1922 by semantical matrices as the following.

Let us consider the sets:

{0, 1/n-1, 2/n-1, 3/n-1, ..., 1} ifn e . andn>2
L,={ {sim:0<s<m,comse_andme *}ifn=1,

{0, 1] (real interval) if n = ¥,

So a Lukasiewicz n-valued matrix has the form:
Mn = ((Lm -, > AV, (—)), {1})’

¢ Schemes preserve the form or figure of formulas such that for every
replacing in the parts the form keeps the same.
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where — is an unary symbol to the negation and —, A, v, <> are
binary symbols for the conditional, conjunction, disjunction and
biconditional, respectively, defined on the set L, as below:

—X =4r 1-x

Xy =g min{l, 1-x+y}

Xvy =¢t (Xy)->y = max{x, y}

XAY =g ~(—xv—y) = min{X, y}

Xy =g (XYINy—x) = 1-x-y|.

In 1920 Lukasiewicz introduced his 3-valued logic with
the following tables:

a [—a 20 |1
01 011 11]1
21 RZ) “lva|l |1
1 (0 110 {%]1

for negation and conditional extending the classical
interpretation for these connectives. The other connectives were
defined as above. This way we can see that M, coincides with
the classical matrix.

Let us indicate the set of tautologies of M, by Taut(M,).
Then it is possible to demonstrate these results (see
Malinowski, 1993):

Proposition 2.1: Taut(M,) c Taut(M,), foreveryn e . .

Proposition 2.2: (Lukasiewicz and Tarsk (1930)) Taut(M,) <
Taut(M,;) < m-1/n-1.

Proposition 2.3: Taut(My;) = Taut(Myo).
Proposition 2.4: Taut(Myo) = N{Taut(M;) /n>2andn e . }.
Only in a second moment was a search for

axiomatizations to Lukasiewicz’s logics started. Like we can
see in Malinowski (1993, p. 39):
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“It can be easily verified that the content of any
Lukasiewicz matrix is closed under the
detachment rule (for the original implication of
the matrix in question). A proof that finite
matrices are axiomatizable was given in
Lukasiewicz and Tarski (1930). Nevertheless, the
problem of formulation of a concrete finite
axiomatization of E(M,) [E(M,) coincides with
Taut(M,)] (with the exception of the case n = 3)
remained open till 1952; see Rosser and
Turquette (1952). Wajsberg (1931) showed that
the (-, —)-fragment of Lukasiewicz’s three-
valued propositional calculus may be
axiomatized, accepting the rules MP [Modus
ponens] and SUB [Substitution], in the following
way:

WI1. p—(q—p)

W2. (p—>q)—=>((q—=1)—(p—1)

W3. (—p—>—q)—{(q—p)

W4 ((p—>—p)—p)—p”.

Lukasiewicz also proposed an axiomatization to the

infinite valued system using five axioms and conjectured that
the axiomatization was complete for the semantical matrix.

Principios

Cignoli, D’Ottaviano and Mundici (1994) say:

“Wajsberg 1935, p. 240, mentioned that he had
proof the Lukasiewicz’s conjecture, however his
proof never appeared published (see Tarski 1956,
p. 51, or Tarski 1983, p. 51).

The first proof published about the Lukasiewicz’s
conjecture was that by Rose and Rosser 1958.
Chang 1959 presented another proof of algebraic
character. An exposition of these works is in
Rosser 1960” [Author’'s free translation from
original in Portuguese].
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All that tell us that it was a little difficult to clean the
bridge between the semantical and syntactical aspects of
Lukasiewicz’s logics.

3. Limits for a translation from L; into CPC

In this section we will show that there is not any
conservative and schematic translation, or better, any
conservative and schematic mapping from L; into CPC, for A =
n e or A= N We will follow a similar way to that one of
Epstein (1990) for L;.

In the following we will interpret the schemes A(op),
Bg(t(a)) and Cx(t(a), t(B)) in CPC. Let us indicate a tautology
by 1 < (p—p) and a contradiction by 0 <> (pA—p). Considering
a formula in which only one propositional variable p occurs, its
translations A(p) has exactly one possibility among the
following equivalencies in CPC:

- cec A(p) & 0

|- cec A(P) <> p

- cec A(p) & —p

|- CPC A(p) 1.

Theorem 3.1: There is not any conservative and schematic
mapping t from L, to CPC.

Proof: Let us suppose that there is a conservative and schematic
mapping t from L; to CPC. We will need to consider just the
connectives — and —.

e It is not possible to occur B_(t(a)) <> 0 because in L;, for
every formula a, we have |-L; a¢>——a. Thus, there is a

formula a such that |-L, —a and through the conservative

mapping t we have |-cpc B_(t(a)) or |-cpc 0.
e It is not possible to occur B_(t(a)) < 1 because there is a
formula o in L, such that |-L, —a. Applying the conservative
mapping t we have |-cpc B_(t(a)) or |-cpc 1.
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e It is not possible to occur B_(t(a)) <> t(a) because there is a
formula o in L; such that |-L, a and |-L; —a. So, by the
conservative mapping t we have |-cec (@) and |-cpc B_(t(a)) or
l-cpc t(a) and l-cpc t((l).

Thus, B_(t(a)) & —t(a), that is, t(—a) = —t(a).

Now we need to consider the scheme C_,(t(c), t(B)). As
in the Lukasiewicz’s logics, there is exactly one designed
element 1, but there are other true values, for any formula a.
Let us denote its valuationby e(@) =T =1 and e(a) =F # 1.

e It is not possible to occur in L, that e(a) = T, e(f) = T and
v(C,(t(), t(B))) = 0, because in CPC we would have |-CPC
C.(t(aw), t(B)) < 0. But considering o = (p—op) and B =
(p—p)—>(p—p) we have |-Ly a, |-Li B and |-L, a—p. By the
conservative mapping t, |-cec (), |-cpc t(B) and [-cpc C(t(av),
t(B)). '

e It is not possible to occur that e(a) = T, e(f) = F and
v(C(t(a), t(B))) = 1. Considering a = (p—p) and B = —(p—p)
we have |-L; a, |-Ly —B and |-L, a—f. By the conservative
mappmg t, we have I-cpc t{a), ,-cpc ﬂt(B) and I'CPC C_>(t((l),
t(B).

e It is not possible to occur that e() = F, e(f) = T and
W(CL(t(a), t(B))) = 0. Considering o = —(p—p) and B = (p—p)
we have |-L, —a, |-Ly B and |-L, a—f. By the conservative
mapping t, we have |-cpc —t(@), |-cpc t(B) and |-cpc Co(H(a),
t(B)).

e It is not possible to occur that e(a) = F, e(f) = F and
w(Co(t(aw), t(B))) = 0. Considering o = —(pop) and B =
—(p—p), we have |-L, —a, |-Ly —B and |-L, a—p. By the
conservative mapping t we have |-cpc —t(at), |-cpc —t(B) and |-
cre C.,(H@), 1(B).

Thus, C_,(t(a), t(B)) < t(a) = t(B).

We still need to show the impossibility of a function
with these characteristics. Well, the formulas of the following
types are theorems of LN and therefore of L,:

Ax; o= (o)
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Ax; (0B)> (o).

The schemes Ax; and Ax, were introduced by
Lukasiewcz for L,. In this way, the type of formulas above
are theorems of LN, and any other L,. But the scheme:

Ax3 (0> (-1 (0B (a—>),
is not a L;-theorem because in the presence of these three
schemes we obtain the classical propositional calculus L, =
CPC as in Hamilton (1978). The schemes Ax, and Ax; together
give us the usual Deduction Theorem that is known to be non-
valid in L;.

Thus, taking o = [a—=>(B->y)]-=>[(a—=>B)—>(a—y)] we
get (o) < [(a)> (H(P)2t()]->[(tH(a)>t(B))—>(t(c)>t(¥))]
and then |-Ly o, but |-cpc t(o), that is a contradiction to the fact
that t is a conservative mapping.

Even though it is not part of the proof we can consider
also the scheme A(p).

e Since |-L, p, then it is not possible to occur |-cpc A(p) < 1.
e As |-Ly, —p and t(—p) = —A(p), then it is not possible to occur
|-cec A(p) <> 0.

Then we have that A(p) = p or A(p) = —p.

This result shows us that it is not easy to translate from
Lukasiewicz’s into the classical logic. Even though it was
shown the possibility of getting such a function, maybe the
function supposed in (Feitosa, Baar, 200_) be a non recursive
function and so it keeps us far from that translation.

Abstract

This work presents some concepts involving translation
between logics and a revision of Lukasiewicz’s logics. Then, as
the central result, it shows there is not a schematic translation
from any Lukasiewicz’s logic into the classical propositional
logic. This can give us some idea of how difficult it is to find
such a function.
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