EFECTOS DEL ENTRENAMIENTO DE LOS MÚSCULOS INSPIRATORIOS EN NIÑOS Y ADOLESCENTES CON ENFERMEDADES NEUROMUSCULARES

RODRIGO TORRES-CASTRO¹, CATALINA CHRISTOFOROU¹, DIANA GARRIDO¹, ROBERTO VERA-URIBE¹,², HOMERO PUPPO¹

¹Departamento de Kinesiología, Facultad de Medicina, Universidad de Chile
²Programa Nacional de Asistencia Ventilatoria no Invasiva, Ministerio de Salud, Chile

Received October 22, 2014; accepted February 22, 2015

Introducción: Las enfermedades neuromusculares se caracterizan por presentar disminución de la fuerza y resistencia de la musculatura respiratoria. La debilidad muscular respiratoria impacta la evolución clínica y la calidad de vida de los pacientes. El objetivo de este estudio fue evaluar los efectos del Entrenamiento Muscular Inspiratorio (EMI) en la fuerza y resistencia de estos músculos en niños y adolescentes con enfermedades neuromusculares.

Métodos: Fueron incluidos niños y adolescentes con enfermedades neuromusculares controlados de forma ambulatoria en los servicios de Neumología Infantil de los hospitales de la Región Metropolitana de Chile. Los pacientes realizaron un protocolo de EMI con una carga del 30% de la presión inspiratoria máxima (Pimax), 15 minutos diarios, 5 veces a la semana, durante 6 semanas con una válvula IMT Threshold®. Los parámetros evaluados fueron la Pimax, la presión inspiratoria máxima (Pcmax) y el tiempo límite (Tlim) cada 15 días.

Resultados: Se reclutaron 15 sujetos. La media de edad fue de 12.8 ± 3.9 años con los siguientes diagnósticos: Distrofia Muscular de Duchenne (9), Atrofia Espinal tipo II (3), Miopatía Congénita (3). La media del tiempo límite inicial fue de 110 ± 51 segundos y el final de 368 ± 161 segundos existiendo diferencia significativa (p < 0.0001). La presión inspiratoria máxima inicial fue de 49 ± 18 cmH2O (48% de valor de referencia) y la final fue de 62 ± cmH2O (61% de valor de referencia), existiendo diferencia significativa (p < 0.0001).

Conclusiones: El entrenamiento específico de la musculatura respiratoria con cargas de baja intensidad (30%) mediante el uso de una válvula IMT Threshold®, aumenta la fuerza y resistencia de la musculatura respiratoria en las pacientes con ENM.
INTRODUCCIÓN
Las enfermedades neuromusculares (ENM) son patologías que afectan algún componente de la unidad motora y se caracterizan por generar debilidad y atrofia muscular progresiva en todos los músculos esqueléticos 1. El compromiso que genera esta patología en el sistema respiratorio, dependerá del grado de afectación muscular y la progresión de la enfermedad 2.

En los pacientes con ENM, la debilidad de músculos inspiratorios y espiratorios ocurre previa a la disminución de la capacidad vital (CV), constituyendo un predictor precoz de impacto en la vida del paciente y del sujeto 3. En cuanto a la musculatura respiratoria en particular, la debilidad de músculos accesorios como los intercostales internos y la musculatura abdominal, que se utilizan en determinadas circunstancias, condicionará una tos ineﬁcaz y diﬁcultad para drenar las secreciones 4. Finalmente, existirá una hipoventilación con un desbalance entre la ventilación y la perfusión, que aumentará la PCO2 y disminuirá la PO2, llevando al sujeto a una insuficiencia respiratoria 5. La falla de los músculos respiratorios constituye la primera causa de muerte en estos sujetos 6. La resistencia muscular se deﬁne como la capacidad de oponerse a la fatiga. Podemos medir la resistencia de la musculatura inspiratoria mediante diversos métodos. Uno de ellos es el desarrollado por Matecki y colaboradores en el año 2001 7, donde el sujeto inspiraba a través de una válvula con una carga de 35% de la Pimax que es la máxima presión generada por los músculos inspiratorios en una inspiración forzada 8. La variable que determina la prueba es el tiempo que el sujeto es capaz de mantener su volumen corriente, respirando con una determinada carga y esto fue llamado Tiempo límite (Tlim) 7.

La fuerza y resistencia de los músculos respiratorios pueden ser entrenadas en sujetos con ENM 9. Diversas revisiones han demostrado que el entrenamiento de la musculatura respiratoria lleva a un aumento de la fuerza de ésta 9,10, por lo tanto, el objetivo de este estudio fue determinar el efecto del entrenamiento de los músculos inspiratorios a través del uso de un dispositivo umbral ﬂujo-independiente en la mejora de la fuerza y resistencia de la musculatura inspiratoria en niños y adolescentes con ENM.

MATERIALES Y MÉTODOS
Este estudio es una serie de casos no aleatorizada, longitudinal y prospectiva. Nuestro muestreo fue por “conveniencia” ya que las ENM son enfermedades con una prevalencia baja 11. Los criterios de inclusión fueron: pacientes con ENM diagnosticado a través de estudio genético y biopsia muscular, residentes en Santiago de Chile, de 6 a 20 años, sin exacerbación respiratoria en el último mes. Se excluyeron pacientes con traqueotomía, escoliosis con ángulo de Cobb mayor a 40° y daño pulmonar crónico. El estudio fue aprobado por el Comité de Ética de Investigación en Seres Humanos de la Universidad de Chile (número del protocolo: 073-2013).

Evaluar la fuerza y resistencia de los músculos inspiratorios
La evaluación de la Pimax se realizó con un manómetro de presión negativa de 0 a -120 cm H2O (DHD, Healthcare, NY, USA) y con el sujeto sentado al que se le solicitó una inspiración lo más rápida posible desde volumen residual a través de una válvula unidireccional (NIF-tee, DHD, Healthcare, NY, USA). Se aceptó como maniobra repetible si durante 3 evaluaciones obtenía una diferencia menor al 10% entre ellas recogiendo el valor mayor como la medición obtenida, el procedimiento utilizado fue el descrito previamente por la American Thoracic Society (ATS) 12. La evaluación del Tlim se realizó con una válvula ﬂujo independiente IMT Threshold® (Respironics, New Jersey, USA). El sujeto debía respirar por medio de esta válvula, con una resistencia del 40% de la Pimax obtenida previamente. La prueba se interrumpía cuando el paciente no era capaz de abrir la membrana durante 2 ciclos seguidos o cuando refería no poder continuar por fatiga. El tiempo que era capaz de mantener la respiración en estas condiciones, era el Tlim. La evaluación fue adaptada según procedimientos previamente descritos por Nickerson y Keens 13.

Programa de entrenamiento de los músculos inspiratorio
El entrenamiento se realizó mediante la válvula umbral ﬂujo independiente IMT Threshold® (Respironics, New Jersey, USA), con una carga del 30% de la Pimax obtenida según recomendaciones de la Sociedad Chilena de
Neumología Pediátrica 14. El protocolo fue aplicado durante 15 minutos, 5 veces a la semana, 1 vez al día y durante 6 semanas desde el día inicial. Posteriormente se realizó las evaluaciones cada 15 días hasta completar las 6 semanas. Posterior a cada evaluación, la carga fue ajustada al 30% de la nueva evaluación. El 40% de las sesiones fue supervisada por un fisioterapeuta.

Análisis Estadístico

El análisis estadístico se realizó utilizando el Software GraphPad Prism 5.0 (GraphPad Software, Inc. La Jolla, CA USA). Realizamos la prueba estadística de normalidad de Shapiro-Wilk para determinar si la distribución de frecuencia era normal. Para la comparación de las variables \(P_{\text{max}} \), \(P_{\text{e max}} \) y \(T_{\text{lim}} \) de los siguientes momentos: basal, después de dos semanas, cuatro semanas y seis semanas se utilizó ANOVA de medidas repetidas con un análisis post-hoc de Bonferroni. Fueron considerados significativos los valores de \(p \) menores a 0.05.

RESULTADOS

Se reclutaron 15 sujetos (12 niños y 3 niñas) con una media de edad de 12.8 ± 3.9 años con los siguientes diagnósticos: nueve pacientes con Distrofia Muscular de Duchenne (DMD), tres pacientes con Atrofia Espinal (AE) tipo II y tres pacientes con Miopatía Congénita (MC) (tabla 1).

La media del \(T_{\text{lim}} \) inicial fue de 110 ± 51 segundos, a las 2 semanas 231 ± 133 segundos, a las 4 semanas 309 ± 157 segundos y a las 6 semanas fue de 368 ± 161 segundos.

La \(P_{\text{max}} \) inicial fue de 49 ± 18 cmH\(_2\)O (48% de valor de referencia), a las 2 semanas 54 ± 20 cmH\(_2\)O (53% de valor de referencia), a las 4 semanas 59 ± 19 cmH\(_2\)O (58% de valor de referencia) y a las 6 semanas fue de 62 ± 18 cmH\(_2\)O (61% de valor de referencia) (Figura 2). Existió diferencia significativa para \(T_{\text{lim}} \) y \(P_{\text{max}} \) entre la medición basal y la medición a las 6 semanas (\(p < 0.0001 \)). Los valores para cada sujeto se pueden ver en la tabla 1.

Tabla 1. Características de los sujetos de estudio

<table>
<thead>
<tr>
<th>Sujeto</th>
<th>Sexo</th>
<th>Edad</th>
<th>Diagnóstico</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>15</td>
<td>DMD</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>9</td>
<td>DMD</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>12</td>
<td>MC</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>18</td>
<td>DMD</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>12</td>
<td>MC</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>13</td>
<td>MC</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>18</td>
<td>DMD</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>9</td>
<td>DMD</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>20</td>
<td>DMD</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>11</td>
<td>AE II</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>9</td>
<td>AE II</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>12</td>
<td>DMD</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>13</td>
<td>DMD</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>15</td>
<td>DMD</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>6</td>
<td>AE II</td>
</tr>
</tbody>
</table>

Figura 1: Comparación de medias de \(T_{\text{lim}} \) al inicio, a las 2, 4 y 6 semanas de aplicado el protocolo de entrenamiento.

Indica significativo en el test ANOVA de medidas repetidas con post-hoc de Bonferroni
Espinal II

La muestra se dividió por edad en dos grupos: mayor a 12 años y menor o igual a 12 años. En el grupo de mayor a 12 años, tuvo un cambio mayor en el Tlim, en cambio el grupo menor a 12 años tuvo un cambio mayor en la Pimax, tal como se puede apreciar en la tabla 2. Además, se aprecia que el cambio en la Pimax se produce a las 6 semanas en el grupo mayor a 12, en cambio en el grupo menor o igual a 12 se produce a las 4 semanas. Sin embargo, no hubo diferencias significativas en el resultado final entre ambos grupos.

Figura 2: Comparación de medias de Pimax, Pemax al inicio, a las 2, 4 y 6 semanas de aplicado el protocolo de entrenamiento y el delta de incremento en la Pimax, Pemax. * indica significativo en el test ANOVA de medidas repetidas con post-hoc de Bonferroni.

Tabla 2. Subgrupos diferenciados por edad

<table>
<thead>
<tr>
<th>Edad</th>
<th>Pimax (cmH2O)</th>
<th>Tiempo Límite (minutos)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basal</td>
<td>semana 2</td>
</tr>
<tr>
<td>> 12 años</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>43 + 18</td>
<td>45 + 21</td>
</tr>
<tr>
<td>< 12 años</td>
<td>52 + 23</td>
<td>59 + 22</td>
</tr>
</tbody>
</table>

*p significativo entre basal y demás semanas con el test de ANOVA para medidas repetidas con post-hoc de Bonferroni.
DISCUSIÓN

El objetivo de nuestro estudio fue evaluar los efectos del entrenamiento de los músculos inspiratorios en la mejora de la fuerza y resistencia de la musculatura inspiratoria en niños y adolescentes con ENM. En nuestra muestra, encontramos diferencias significativas entre las evaluaciones basales y a las 6 semanas de la P\textsubscript{max} y del T\textsubscript{lim}.

Las ENM se caracterizan por una debilidad en la fuerza y resistencia de la musculatura general. La debilidad de la musculatura respiratoria conlleva a una disminución progresiva de la CV llevando a estos pacientes a un patrón restrictivo irreversible 15. Debido a esto, existe una mayor incidencia de morbi-mortalidad respiratoria, siendo muy difícil para estos sujetos sostener un esfuerzo de ventilación, por la disminución de la fuerza y resistencia de la musculatura respiratoria.

Estudios previos entrenaron a un grupo de niños con DMD y AE durante 2 años, con un protocolo de resistencia de 10 ciclos respiratorios de 1 minuto con 20 segundos de pausa, con cargas de 70% al 80% de la P\textsubscript{max} 8. Los 3 grupos intervenidos, divididos según su CV (Grupo A con CV entre 27 y 50% del predicho; Grupo B con CV entre 51 y 70% del predicho; Grupo C con CV entre 71 y 96% del predicho), aumentaron su resistencia muscular, evaluada a través del método de la Ventilación Voluntaria Máxima (VVM) desde 52.7 a 69.5 L/min en el grupo A, en el grupo B desde 59.4 a 94 L/min y en el grupo C de 59.5 a 70.5 L/min con diferencias estadísticamente significativa para los 3 grupos 8.

Por otro lado se demostró que la debilidad de los músculos respiratorios en pacientes con enfermedades severas, aumenta el trabajo de la respiración y los músculos son susceptibles a lesiones 16. Es por esto que otros autores han afirmado que el entrenamiento con cargas menores (30% P\textsubscript{max}), dan un mayor margen de seguridad y estimulan el aumento de la resistencia en sujetos con Enfermedad Pulmonar Obstructiva Crónica 17. Por otro lado, existen estudios que demuestran inexistencia de mejoras en la resistencia muscular 18 o mejoras escasas en ésta 19. La controversia en el tema puede ser causa de las diferencias en los métodos de evaluación de la resistencia y en los protocolos de entrenamiento, además de un entrenamiento discontinuo o inefectivo de los sujetos de estudio. Luego de cumplido el protocolo de entrenamiento de la resistencia durante 6 semanas en la casa, con una carga baja de 30% de la P\textsubscript{max}, a través de una válvula flujo-independentemente, se observó una mejora significativa en la resistencia de la musculatura inspiratoria (p < 0.05).

En la mayoría de los estudios previos donde se entrenaba la musculatura respiratoria con cargas resistentes, se vio mejorías en la resistencia de la musculatura inspiratoria, sin embargo, los protocolos han sido muy variados. Por una parte, las cargas con las que se entrenaban a los sujetos eran distintas, siendo algunas de estas muy altas, como fue el caso del estudio realizado anteriormente 6, quienes entrenaron a un grupo de niños con DMD y AE con un protocolo de resistencia con carga de 70 al 80% de la P\textsubscript{max}. Además, los tiempos que duraban los protocolos eran distintos, algunos se extendían 6 semanas, 6 meses y hasta 2 años. Debido a la edad que presentan estos sujetos, es necesario reducir al mínimo el tiempo de entrenamiento y la carga que resulten efectivas para que logren una mejoría y no genere un aburrimiento en los niños que conlleva al abandono de la terapia. Al igual que otros autores, utilizamos para la evaluación y el entrenamiento de la resistencia, un dispositivo umbral flujo-independiente, que permite tener un resultado más objetivo 19. El porcentaje de mejoría obtenido en este estudio luego de las 6 semanas de entrenamiento fue de 234%. Esto puede ser debido al aumento de la actividad neuromuscular o la sobrecarga de las fibras musculares que deriva en la transición de fibras rápidas (II) a fibras lentas (I) que son necesarias para la resistencia muscular. Previamente 20, los autores Tobin y colaboradores aplicó un protocolo de entrenamiento similar al utilizado en este estudio (2 veces al día, todos los días durante 6 semanas, con una carga del 30% del P\textsubscript{max} en el hogar) en niños con DMD, obteniendo como resultado una mejoría de 46% 19. A pesar de que estos resultados pueden deberse a múltiples factores, es importante destacar que nuestros datos muestran que entrenando con menor cantidad de veces a la semana, es posible lograr el mismo efecto, con la ventaja de que podría mejorar la adherencia al tratamiento de parte de los sujetos. Otro aspecto importante a considerar es el comportamiento distinto entre los grupos al separarlos por edad. Si bien no hubo diferencias significativas ni en el T\textsubscript{lim} ni en la P\textsubscript{max}, se nota una marcada tendencia a una mejoría menor del T\textsubscript{lim} en el grupo mayor a 12 años.
y una mejora mayor de la Pimax en el grupo menor o igual de 12 años. Como limitación del estudio, tenemos en primer lugar, la dificultad de lograr que niños tan pequeños se adhiran a un protocolo minucioso y disciplinado de entrenamiento de la musculatura respiratoria. Otra importante limitación fue la ausencia de un grupo control. Además, es importante resaltar, que la muestra estuvo principalmente constituida por sujetos con DMD y los sujetos con AE2 y MC fueron sólo 3 lo que imposibilitó realizar un análisis por patología por la alta probabilidad de sesgo de nuestros datos. Por otro lado, el reclutamiento de más sujetos con DMD (67%) determino que la muestra estuviese compuesta mayoritariamente por niños (80%), lo que agrega otra potencial fuente de sesgo. Entretanto cabe resaltar que la adhesión al EMI fue total en los niños que comenzaron el estudio.

Finalmente podemos concluir que el entrenamiento específico de la musculatura respiratoria con cargas de baja intensidad mediante la válvula IMT Threshold®, mejora la fuerza y resistencia de la musculatura respiratoria en los pacientes con ENM.

REFERENCIAS