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Abstract: The water quality in reservoirs is crucial for the preservation of ecosystems and human health. Turbidity, which assesses the presence 

of suspended particles, is an important indicator typically measured on-site with expensive equipment. However, with the advancement of 

Artificial Intelligence (AI), it is possible to estimate turbidity using orbital images associated with indices such as NDTI (Normalized Difference 

Turbidity Index). In addition to orbital sensors, another technology widely used for various purposes is remotely piloted aircraft (RPA), which 

enables the generation of digital photogrammetric products like Digital Elevation Models and high-detail Orthophotos. In this context, this study 

aims to estimate turbidity in reservoirs using RPA images and Machine Learning techniques such as Artificial Neural Networks (ANN), Support 

Vector Machine (SVM), Gradient Boosting Machine (GBM), and Random Forest (RF). To achieve this, on-site surveys were conducted using 

turbidimeters and RPAs to obtain data for regression analysis to correlate the information. Based on the results obtained, it was observed that 

the prediction of turbidity using RF and ANN exhibited the best performance. 

Keywords: Remote Sensing; Water quality; Data Analysis; Artificial Intelligence. 

 

Resumo: A qualidade da água em reservatórios é fundamental para a preservação dos ecossistemas e da saúde humana. A turbidez, que avalia 

a presença de partículas suspensas, é um indicador importante, geralmente medido in loco com equipamentos onerosos. No entanto, com o 

avanço da Inteligência Artificial (IA), é possível estimar a turbidez usando imagens orbitais associadas a índices como o NDTI (Normalized 

Difference Turbidy Index). Além de sensores orbitais, outra tecnologia que vem sendo muito utilizada para vários fins são as aeronaves 

remotamente pilotadas (RPA’s) que possibilitam a geração de produtos fotogramétricos digitais como Modelos Digitais de Elevação e 

Ortofotografias em grandes níveis de detalhes. Nesse sentido, este estudo visa estimar a turbidez em reservatórios usando imagens de RPA e 

técnicas de Machine Learning como a RNA (Redes Neurais Artificiais), SVM (Support Vector Machine), GBM (Gradient Boosting Machine) 

e RF (Random Forest). Assim, foram feitos levantamentos in loco com o equipamento turbidímetro e com RPA para obtenção dos dados para 

análise de regressão para correlacionar os dados. Por meio dos resultados obtidos, pôde-se perceber que a predição da turbidez utilizando o RF 

e a RNA apresentaram os melhores desempenhos. 
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1. Introduction 

Reservoirs and water bodies play a fundamental role in ensuring water supply for the population. They store large 

quantities of this resource, which is used in various activities such as human consumption, agriculture, and hydroelectric 

power generation (Gleick, 2003; Awange, 2022). Continuous monitoring of these water bodies is essential to identify 

potential problems such as water volume reduction or pollution, allowing corrective measures to be taken before more 

serious issues arise (O’Reilly et al., 2003; Woolway et al., 2020). Depth measurement of reservoirs is one of the main 

forms of monitoring, enabling the assessment of stored water quantity and the identification of sedimentation or erosion 

in the water body (Ferreira, Rodrigues, Santos, 2015; Andrade et al., 2020). 

Moreover, turbidity is also an important factor that can affect water quality. According to Hossain, Mathias, and 

Blanton (2021), turbidity is defined as a measure of water transparency derived from light scattering due to the presence 

of suspended particulate materials in a water body. According to Xiao et al. (2021), evaluating variations in turbidity is an 

essential tool for understanding how sediments or suspended particles are distributed in the aquatic environment, and it 

provides practical information for studying how pollutants settle, decompose, and diffuse in the water. 

According to Allam, Khan, and Meng (2020), remote sensing is an efficient technique for monitoring the aquatic 

environment as it allows real-time and large-scale assessment of different aspects. Through various platforms such as 

artificial satellites and RPAs (Remotely Piloted Aircrafts), detailed images and information about the aquatic environment 

can be obtained, enabling a more accurate assessment of relevant environmental variables such as water quality, the 

presence of pollutants, turbidity, among others. 

According to Prior et al. (2020), RPAs offer users flexibility in obtaining information, allowing precise control over 

the spatial resolution of captured images. With this technology, data can be collected in dangerous or hard-to-access areas, 

and the spatial resolution of the image to be acquired can be planned in advance. Additionally, it can be remotely controlled, 

ensuring user safety and making data collection more efficient. 

Technological advancements have also led to the optimization of Artificial Intelligence and consequently, Machine 

Learning techniques. The development of these tools associated with optical remote sensing, especially in environmental 

studies, can provide significant advances and conveniences in information gathering. Authors such as Li et al. (2023) used 

Sentinel-3 OLCI images to estimate water turbidity in a Chinese lake, employing algorithms like SR (Simple Regression), 

PLSR (Partial Least Squares Regression), SVR (Support Vector Regression), BP (Backpropagation neural network), KNN 

(K-nearest neighbor), RF (Random Forest), and XGBoost (Extreme Gradient Boosting). In this study, RF showed superior 

performance over the others, achieving an R² of 0.92 and an RMSE of 12.65 NTU (Nephelometric Turbidity Unit). Ma et 

al. (2021) conducted studies on water turbidity estimation using Sentinel 2A images and machine learning algorithms, 

finding GBDT (Gradient Boosting Decision Tree) as the best regression method, presenting better performance values. 

In this context, the main objective of this work is to estimate the turbidity of water bodies using Machine Learning 

algorithms: SVM (Support Vector Machine), GBM (Gradient Boosting Machine), RF (Random Forest), and ANN 

(Artificial Neural Networks) and RPA images. 

 

2. Study Area 

The study area is located in the city of Viçosa, MG, within the Federal University of Viçosa, and covers approximately 

1.16 hectares (Figure 1). 
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Figure 1 – Study area showing the water turbidity sampling points. 

Source: Authors (2023). 

 

It is important to highlight that this water body, like other reservoirs present at the University, plays a crucial role in 

supplying the population of Viçosa during the dry season. 

 

3. Methodology 

The methodology adopted in this study can be observed in the flowchart presented in Figure 2. 

 

 
Figure 2 – Methodology flowchart. 

Source: Authors (2023). 
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3.1. Data Collection and Processing 

To initiate the study, an aerophotogrammetric survey was necessary. A flight plan was executed with 80% longitudinal 

overlap and 70% lateral overlap at an altitude of 80 meters. The flight was conducted using a Mavic Air 2S aircraft, and 

55 photographs were acquired with an average GSD of 2.66 cm/pixel. Additionally, 7 control points and 7 check points 

were collected using the GNSS (Global Navigation Satellite System) RTK (Real-Time Kinematic) from Topomap, model 

T10. 

The aerophotogrammetric data processing was performed using Agisoft Metashape software (AGISOFT LCC, 2023), 

where the images were imported and aligned. Subsequently, the control points were imported, and the dense point cloud 

was generated, modeled, and textured, creating the Digital Surface Model (DSM). Finally, the orthomosaic of the 

photographs was generated using the DSM and the camera calibration information. 

In addition, water turbidity points were collected using the TU430 turbidimeter from AKSO (Figure 3), and the GNSS 

RTK T10 from Topomap was used for georeferencing the samples (Figure 4). The points were collected randomly with a 

density of approximately 51 samples/ha. Authors like Zhao et al. (2011), Bonansea et al. (2015), and Su and Chou (2015) 

collected samples from water bodies and concluded that at least 9 samples/ha are necessary for a correct understanding of 

water turbidity variability in the study area. The distribution of samples is shown in Figure 1. Statistical analyses were 

performed on the turbidity samples for verification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Digital Turbidimeter TU340. 

Source: AKSO (2023). 

 

 

 

 

 

 

 

 

 

 

Figura 4 – GNSS RTK T10. 

Source: Topomap (2023). 

 

The bathymetric survey was also conducted to complement the analysis, using a single-beam echo sounder E20 from 

Teledyne Odom, operating at a frequency of 210 kHz. For the horizontal positioning of the boat, a pair of GNSS RTK 

receivers was employed. Six longitudinal survey lines and two transverse verification lines were surveyed. These 

bathymetric data were processed using Hypack 2021 software (HYPACK, 2021) and interpolated using the IDW (Inverse 

Distance Weighted) method in ArcGis 10.5 software (ESRI, 2016) to generate the Digital Depth Model (DDM), where 

depth values are displayed continuously. 
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3.2. Data Analysis 

After creating the orthomosaic, it was possible to correlate the digital pixel values with the bathymetry DDM and water 

turbidity samples. To better match the data, the turbidity samples were also interpolated using the IDW interpolator, thus 

creating a Digital Turbidity Model (DTM), as done by Dezordi et al. (2019). 

Additionally, the NDTI (Normalized Difference Turbidity Index) was calculated to be used later to improve the training 

of Machine Learning algorithms (Equation 1). 

Equation 1 Normalized Difference Turbidity Index (NDTI) 

 

          𝑁𝐷𝑇𝐼 =  
𝜌𝑟𝑒𝑑−𝜌𝑔𝑟𝑒𝑒𝑛

𝜌𝑟𝑒𝑑+ 𝜌𝑔𝑟𝑒𝑒𝑛
                                                                                      (1) 

 

Where 𝜌𝑟𝑒𝑑 are the brightness values of the orthophoto for the red light band, and 𝜌𝑔𝑟𝑒𝑒𝑛 are the brightness values 

for the green light band. 

NDTI is an index created by Lacaux et al. (2007) and used by authors such as Cahalane et al. (2019) for depth prediction 

with Landsat 8, Pleiades, and RapidEye images. These authors observed that water turbidity can result in higher radiance 

values for the visible and NIR (Near Infra-Red) bands, underestimating depths in deeper locations (6m to 10m) (CASAL 

et al., 2019). Lacaux et al. (2007) also state that in turbid water locations, the electromagnetic radiation corresponding to 

red light can have a higher response compared to green light. 

 

3.3. Tubidity Estimation Using Machine Learning 

Using the points generated from the DTM (Digital Turbidity Model) with the correlated values of the orthophoto bands, 

depth, and the aforementioned NDTI, a database was created, also containing the UTM coordinates of the points for 

insertion into the RF (Random Forest), GBM (Gradient Boosting Machine), SVM (Support Vector Machine), and ANN 

(Artificial Neural Networks) algorithms in R software (R CORE TEAM, 2023). 

For all algorithms, 70% of the sample points were randomly selected for training the empirical methods to be evaluated, 

and the remaining 30% for prediction testing. Authors like Verrelst et al. (2012), Cahalane et al. (2019), and Mateo-Pérez 

et al. (2020) used this data separation method for training and testing, achieving unbiased results with good performance. 

Additionally, to ensure consistent evaluation of the algorithms, a "seed" was defined so that the algorithms would 

always select the samples in the same order, i.e., always using the same data set. 

For SVM, the "svmRadial" training method was used as it provided the best results for the selected sample. Authors 

like Hong et al. (2016) and Harimoorthy and Thangavelu (2021) also employed this method for better predictions. 

For GBM and RF algorithms, the "gbm" and "rf" methods were used, respectively, as it is the standard for making 

predictions with these Machine Learning methods. The ANN had one hidden layer, four intermediate layers corresponding 

to the brightness values for the visible bands of the orthophoto, as well as the calculated NDTI values, and one output layer 

corresponding to turbidity. Additionally, the ANN was trained and evaluated using the "neuralnet" package, which employs 

the "backpropagation" tool in the learning process. 

 

3.4. Quality Estimation 

To evaluate the obtained results, an exploratory analysis of the discrepancies found between the reference turbidity 

values and the values estimated by the aforementioned algorithms was initially conducted. 

For subsequent analysis and comparison of all methods, the discrepancies' values addressed in this work were stored 

using RMSE (Root Mean Square Error), MAE (Mean Average Error), and R² (correlation coefficient) (Equations 2, 3, and 

4). 

 

Equação 2 Mean Absolulte Error (MAE) 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑡𝑖 −  𝑡𝑝𝑟𝑒𝑑𝑖| 𝑛

𝑗=1                                                                    (2)    
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Equação 3 Root Mean Square Error (RMSE) 

 𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑡𝑖 − 𝑡𝑝𝑟𝑒𝑑𝑖)²   𝑛

𝑗=1                                                             (3)    

Equação 4 Correlation Coefficient (R²) 

 

             𝑅2 =
∑ (𝑡𝑝𝑟𝑒𝑑𝑖 −𝑡𝑚𝑒𝑑𝑖𝑎)

2𝑛
𝑖=1

∑ (𝑡𝑖 −𝑡𝑚𝑒𝑑𝑖𝑎)
2𝑛

𝑖=1

                                                                          (4) 

Where ti corresponds to the observed sample values (collected with the turbidimeter); tpredi, is the predicted sample 

value (obtained by the ML methods); tmedia, is the mean of the observed values, and n is the number of samples. 

The RMSE and MAE are indicators of the precision of the predicted value. Thus, when the estimated turbidity and the 

predicted turbidity have close values, these indicators approach zero, meaning that the smaller the RMSE and MAE values, 

the greater the precision found by the method (Yang et al., 2020). 

Additionally, to spatialize and better visualize the data, digital turbidity models were generated with the methods used 

in ArcGIS 10.5 software (ESRI, 2016). 

 

 

4. Results and Discussion 

The first step in implementing the adopted methodology was to perform a statistical analysis of the turbidity data 

collected in situ using the turbidimeter (Table 1). 

 
Table 1 – Statistical Analysis of Turbidity Points. 

Source: Authors (2023). 

 

It can be observed in Table 1, from the values shown, that there is low variability in the turbidity data sample, with a 

difference between the highest and lowest values of 4.36 NTU. Next, with the training and prediction by the Machine 

Learning algorithms, it was possible to obtain the discrepancy values between the observed and predicted turbidity 

presented by each method. Thus, an exploratory statistical analysis of the discrepancies was performed (Table 2). 
 

Table 2 – Exploratory Analysis of Turbidity Discrepancies for each Machine Learning Algorithm 

Source: Authors (2023). 

  
Mean 

Standard 

Error 

Standard 

Deviation 

Sample 

Variance 
Kurtosis Skewness Minimum  Maximum 

 Turbidity (NTU) 5.4 0.11 0.84 0.7 0.87 0.02 3.64 8 

 
RF (Random 

Forest) 

ANN (Artificial Neural 

Network) 

SVM (Support Vector 

Machine) 

GBM (Gradient 

Boosting Machine) 

Mean (NTU) -0.002 -0.003 -0.007 -0.004 

Standard  Error 

(NTU) 
0.001 0.002 0.002 0.002 

Median (NTU) 0.000 0.006 -0.003 0.010 

Standard 

Deviation (NTU) 
0.143 0.254 0.241 0.238 

Sample Variance 

(NTU²) 
0.020 0.065 0.058 0.057 

Kurtosis 19.195 2.823 5.594 4.133 

Skewness -0.527 -0.049 -0.595 -0.527 
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From the values illustrated in Table 2, it can be seen that RF presented lower values for mean, standard error, median, 

standard deviation, and variance of the discrepancies, indicating better performance. Among the other algorithms, ANN 

had the lowest mean; however, its standard deviation, variance, and median were relatively higher than those of SVM and 

GBM. Ma et al. (2021) also tested Machine Learning algorithms, where RF and GBDT, similar to GBM, showed the best 

performance for RMSE and R² compared to SVM, KNN, and ELM (Extreme Learning Machine). 

To complement the exploratory analyses, scatter plots for the predicted and observed values were created (Figure 5). 

 

Figure 5 – Scatter plots between predicted and observed values. a) RF (Random Forest); b) ANN (Artificial Neural 

Networks); c) SVM (Support Vector Machine); d) GBM (Gradient Boosting Machine). 

Source: Authors (2023). 

 

It can be observed (Figure 5) that the RF and GBM algorithms show less sample dispersion, with higher R² values of 

0.90 and 0.74, respectively. This indicates that RF showed less dispersed and more consistent values with those observed. 

ANN did not make accurate predictions for turbidity values below 4.5 NTU or above 6.5 NTU. SVM had greater difficulty 

predicting turbidity for values above 7.0 NTU. 

Uncertainty calculation was performed using RMSE and MAE for performance analysis and R² for correlation 

evaluation of each algorithm (Table 3). 

 

 

Table 3 – Performance evaluation for each Machine Learning algorithm according to RMSE (Root Mean Square Error), 

MAE (Mean Absolute Error), and R² (Correlation Coefficient) parameters. 

Source: Authors (2023). 

 

 RMSE (NTU) MAE (NTU) R² 

ANN 0.25 0.18 0.70 

SVM 0.60 0.46 0.73 

GBM 0.24 0.17 0.74 

RF 0.14 0.07 0.90 
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It is noteworthy that in this uncertainty analysis (Table 3), RF showed the best performance, with RMSE values of 0.14 

NTU and MAE of 0.07 NTU. It was followed by GBM with an RMSE of 0.24 NTU and an MAE of 0.17 NTU. Although 

ANN presented values close to GBM, the scatter plot analysis previously conducted indicates that ANN does not fit well 

as a model for the data in question. Ma et al. (2021) also found low performance using ANN and SVM for turbidity 

estimation with Sentinel 2A images in northeastern China. Li et al. (2023) achieved the best water turbidity prediction 

using the RF algorithm for Sentinel 3 images, with the best RMSE and R² values. 

Subsequently, Digital Turbidity Models were generated using the IDW interpolator for each Machine Learning method 

(Figure 6). 

 

 
Figure 6 – DTMs for the Machine Learning methods a) Reference; b) RF (Random Forest); c) ANN (Artificial Neural 

Networks); d) SVM (Support Vector Machine); e) GBM (Gradient Boosting Machine). 

Source: Authors (2023). 
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The DTMs significantly aid in the spatial visualization of the estimated turbidity for each algorithm. In this regard, 

analyzing Figure 6, it can be seen that RF is the method that most closely matches the reference DTM of the reservoir, 

presenting similar points with high and low turbidity values. On the other hand, the other algorithms show modeling with 

less similarity to the reference DTM, especially ANN, where turbidity values were smoothed. Authors like Keller et al. 

(2018) also observed poorer performance of models with ANN, using the Backpropagation algorithm on hyperspectral 

images. 

It is believed that RF showed the best performance in all analyses due to its robustness and lower sensitivity to potential 

outliers that may exist in the data set. Additionally, RF is capable of constructing independent decision trees, making it 

more effective in noisy data. Generally, ANN is not very effective in samples contaminated with outliers and in cases of 

high data complexity; the network architecture must be modified numerous times to obtain the best result, potentially 

generating significant computational effort (Raudys & Jain, 1990; Yeo & Johnson, 2000; Bishop, 2006). 

 

4. Final Considerations 

The continuous study and monitoring of rivers and reservoirs is crucial for the effective management of available water 

resources worldwide. Turbidity is an essential parameter for drawing conclusions about the quality of a water body. In this 

context, the results presented highlight the effectiveness of using RPA images associated with Machine Learning 

techniques to estimate water turbidity in reservoirs. This proposed approach can be applied on a large scale to monitor 

water quality in reservoirs, providing valuable information for organizations responsible for water resource management. 

The use of Machine Learning techniques, particularly RF, can significantly aid in accurately, quickly, and cost-

effectively predicting water turbidity in reservoirs. It can also be affirmed that GBM is a potential algorithm for use in this 

context; however, further tests in different study areas with varying hyperparameters should be conducted for such 

confirmation. 

Therefore, it is recommended for future work to execute the study in different areas and to alternate the hyperparameters 

of ANN to avoid excessive computational effort. The SVM algorithm can also be improved by altering hyperparameters 

and changing the study area. Additionally, performing an outlier detection analysis in the original data set can provide 

even more optimized predictions for the Machine Learning algorithms. 
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