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Abstract: This paper presents a novel methodology developed in Python to map Direct Hydrocarbon Indicator (DHI) anomalies in 3D seismic data using 
the unsupervised machine learning algorithms K-Means and Gaussian Mixture Models. The joint cluster analysis consists of implementing the spatial 
density-based filtering after clustering analysis and investigates the groups interpreted as DHI aiming to distinguish sparsely dense samples and noisy 
information from samples that are, in fact, areas of interest for hydrocarbon exploration. The experiments were performed on the 3D seismic data F3 
Block from Central Graben Basin, Dutch North Sea. The following seismic attributes were extracted to conduct the experiments: Spectral Decomposition 
of 25 and 45 Hz, Relative Acoustic Impedance, Coherence, Logarithm of Sweetness, and Reflection Strength. The working flowchart took advantage of 
good artificial intelligence practices to train the models, such as seismic attributes preconditioning, dimensionality reduction via Principal Component 
Analysis (PCA), and model validation through statistical tests. Despite the initial challenges faced in isolating DHI anomalies through the K-Means 
algorithm, the two-step approach ultimately succeeded in accurately mapping them. 
 
Keywords: Joint Clustering Analysis; Direct Hydrocarbon Indicators; Spatial Filtering. 
 
Resumo: Este trabalho apresenta uma metodologia original desenvolvida em Python para mapear anomalias de Indicadores Diretos de Hidrocarbonetos 
(DHI) em dados sísmicos 3D utilizando os algoritmos de aprendizado de máquina não-supervisionados K-médias e Modelo de Misturas Gaussianas. A 
análise conjunta de agrupamentos consiste em implementar o filtro espacial baseado em densidade após o agrupamento das amostras e investiga os grupos 
interpretados como DHI com o objetivo de distinguir grupos de amostras com densidade esparsa e informações ruidosas das amostras que são, de fato, 
áreas de interesse para a exploração de hidrocarbonetos. Os experimentos foram realizados no dado sísmico F3 Block, da Bacia do Graben Central, Mar 
do Norte holandês. Os seguintes atributos sísmicos foram obtidos: Decomposição Espectral de 25 e 45 Hz, Impedância Acústica Relativa, Coerência, 
Logaritmo do Sweetness e Amplitude Instantânea. O fluxograma de trabalho faz uso das boas práticas na inteligência artificial para treinar os modelos, 
como o pré-condicionamento dos atributos sísmicos, redução de dimensionalidade através da Análise de Componentes Principais (PCA) e a validação 
do modelo por meio de testes estatísticos. Apesar dos desafios iniciais encontrados ao tentar isolar as anomalias de DHI através do algoritmo K-Médias, 
a abordagem em duas etapas obteve sucesso ao mapeá-las com precisão. 
 
Palavras-chave: Análise Conjunta de Agrupamentos; Indicadores Diretos de Hidrocarbonetos; Filtragem Espacial. 
 

 
Received: 22/01/2024; Accepted: 12/08/2024; Published: 30/09/2024. 

 

  ISSN: 2447-3359 

REVISTA DE GEOCIÊNCIAS DO NORDESTE 

Northeast Geosciences Journal 
v. 10, nº 2 (2024) 

https://doi.org/10.21680/2447-3359.2024v10n2ID35149  
 



Barbosa, M. R. S; Carneiro, V; Cerqueira, A. G,, Northeast Geosciences Journal, Caicó, v.10, n.2, (Jul-Dec) p.298-315, 2024.        299                     

_________________________________________________________________________________________________ 

 

1. Introduction 

Direct Hydrocarbon Indicator (DHI) anomalies are usually caused by changes in the elastic properties of rocks. They 
are commonly associated with the saturation of reservoirs in gas or oil (NANDA, 2012).  Their interpretation significantly 
impacts exploratory risk assessment and well allocation for drilling, making it essential to identify economically viable 
reservoirs (FORREST et al., 2010). 

According to Hilterman (2001), advancements in methodologies for detecting and validating DHI anomalies have been 
notable since the 1970s, particularly through AVO (Amplitude vs Offset) analysis and improvements in seismic data 
acquisition and processing technologies. Another significant factor driving this progress is the application of seismic 
attributes to evaluate potential anomalous zones. Although effective for seismic interpretation, correlating a large number 
of seismic attributes simultaneously can be challenging. Regarding this scenario, in recent years, the application of machine 
learning techniques to this and other geophysical problems has seen steady growth (BARBOSA et al., 2022; CERQUEIRA 
et al., 2019; TROCCOLI et al., 2022; ZHAO et al., 2016). 

Machine learning algorithms are techniques used to extract information from datasets, automate different activities, 
and identify patterns of interest that may be imperceptible to human analysis (MITCHELL, 1997). These algorithms use 
different methodologies to learn iteratively from the dataset and adapt to produce reliable and reproducible results. Its 
popularity and efficiency quickly presented intelligent algorithms as a powerful tool for the study of various problems in 
the field of geophysics, such as seismic processing (MA & LUO, 2018; TSAI et al., 2018), seismic interpretation 
(OLIVEIRA et al., 2023; BÖNKE et al., 2024), well logging (WANG et al., 2023; CORDEIRO et al., 2023), seismic 
imaging (HUANG & NOWACK, 2020), earthquake detection (YU & MA, 2021), and quantitative interpretation (MENG 
et al., 2021; LI et al., 2023). 

Pattern recognition activity is an important step for interpreting seismic data related to structural characterization and 
understanding the tectonostratigraphic evolution of a depositional basin, or the aspects of a hydrocarbon reservoir. Its 
primary purpose is to segment seismic data according to some similarity. Barnes & Laughlin (2002) conducted a 
comparative study on K-Means, Hierarchical Agglomeration, and Self-organizing Maps (SOM) algorithms, attesting to 
their good performance in analyzing 3D seismic volumes in terms of accuracy, similarity between techniques, and label 
ordering. Roden & Chen (2017) incorporate a machine learning workflow where principal component analysis (PCA) and 
self-organizing maps (SOM) analyze combinations of seismic attributes for meaningful patterns that correspond to direct 
hydrocarbon indicators. 

The Central Graben Basin (Figure 1a) is an area with a complex geological evolution (BOUROULLEC et al., 2018; 
MAUNDE & ALVES, 2022) and a long exploratory process. From the 60s, through the drilling of the pioneering well, 
exploration activities began in this region (LARMINIE, 1987). Since then, with the increase in the amount of data 
acquisition campaigns, the exploratory potential of the basin has been proven with noteworthy discoveries of large 
recoverable reserves of oil and, mainly, gas. One of those scenarios is formed when those fluids are trapped in Cenozoic 
sandstone reservoirs, generating well-marked seismic amplitude anomalies (DE BRUIN et al., 2022). 

The primary objective of the paper is to present a methodology to identify anomalies indicative of DHI within 3D post-
stack seismic data. Besides that, we established a comparison between two unsupervised shallow learning algorithms 
implemented in Python. The first among these techniques is the K-Means algorithm, which seeks to segment data under 
the cost of minimizing intracluster variance iteratively (JAMES et al., 2013). Then, the Gaussian Mixture Model (GMM) 
was used. It is considered a simple linear superposition of Gaussian components that classifies probability density models 
more informatively than the classification made by a single normal distribution (BISHOP, 2006).  A subsequent filtering 
step is introduced to this second technique, employing spatial density evaluation. This assesses the spatial density of cluster 
samples identified as DHI, aiming to differentiate relevant anomalies from smaller volumes labeled as such but deemed 
insignificant for potential hydrocarbon accumulation zones. A similar approach was implemented by Jiang (2017), in 
which the DBSCAN (Density-based Spatial Clustering in Applications with Noise) algorithm was applied to post-process 
supervised segmented seismic images to identify fluvial channels and faults through convolutional neural networks 
(CNNs). Its use reinforces the idea of continuity within the detected structures (JIANG, 2017). We conducted a multi-
attribute clustering analysis of seismic attribute data in the domain of principal components, in which an ordinary marine 
seismic survey from offshore Netherlands was used in the experiments. They are part of the 3D open data set known as F3 
Block, located in the Dutch North Sea, at the Central Graben Basin (Figure 1a). The incorporation of this two-step process, 
featuring an additional spatial density-based filter, is designed to enhance mapping results when compared to the 
conventional approach of single unsupervised clustering. By focusing on unsupervised learning techniques, we seek to 
offer a more efficient and potentially faster approach to extracting insights and aiding in the interpretation of hydrocarbon 
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indicators. This methodology provides a streamlined workflow, which could be particularly advantageous in scenarios 
where well data is scarce or the traditional labeling process is time-consuming. 

Furthermore, our approach emphasizes the versatility and adaptability of artificial intelligence in geophysical studies. 
By introducing these unsupervised methods, we demonstrate that it is possible to achieve reliable results without heavily 
relying on conventional data preparation steps. This could open new avenues for exploration and analysis, encouraging 
further innovation and experimentation within the field. 

 

 
Figura 1 – (a) Location of the Central Graben Basin, structural highs, and dataset used in this study. (b) Regional 

geological section from the Dutch Central Graben based on 2D seismic after Rosendall et al. (2014). The purple polygon 
delimits the study area. (c) Simplified stratigraphic chart from the Dutch Central Graben (modified from Jakobsen et al., 
2020). Note the sedimentary hiatus in the borders due to salt diapirs. The purple polygon indicates the temporal interval 

of the strata studies herein. 
Source: Authors (2024). 

 
2. Geological overview and dataset 

The Central Graben Basin (Figure 1a) is located in the northeastern offshore portion of the Netherlands, has an area of 
approximately 25,000km², and is considered the southern member of the rifting system that contextualizes the North Sea 
geologically, reaching maximum depths of up to 9 km (WIJKER, 2014). It is bounded by several structural highs such as 
the Cleaver Bank High in southwest, Mid North Sea High in the west, Ringkobing-Fyn High in the east and the Schill 
Grund High in the southeast (ROSENDAAL et al., 2014).  

The tectonostratigraphic evolution of the Central Graben Basin (Figure 1b and 1c) is complex, and it has several phases 
including rifting, intense halokinesis, and tectonic inversion (BOUROULLEC et al., 2018; MAUNDE & ALVES, 2022). 
It is dominated by rifting that occurred mainly in the Mesozoic with a Cenozoic post-rift phase.  

Pre-Zechstein Group comprises sediments from the Carboniferous deposited under a lacustrine environment and 
terrestrial sandstone from the Permian. In the Late Permian cyclic marine evaporite deposition occurred forming the 
Zechstein group (MÜLLER et al., 2022), which is responsible for the development of salt diapirs and the halokinesis 
during the Jurassic and Cretaceous (Figure 1b and 1c).  
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Initiated in the Triassic, the rifting system stabilized between the Jurassic and the Lower Cretaceous with the tectonic 
phases extensional Kimmeridgian, related to the opening of the Atlantic Ocean. From the Late Cretaceous to the present 
day, the rift phase was followed by the sag-type post-rift phase, mainly characterized by tectonic quiescence and subsidence 
of the basin, except for the presence of some tectonic pulses that occurred from the Late Cretaceous to the Cenozoic, which 
generated several faults associated to tectonic inversion (MAUNDE & ALVES, 2022). In the Cenozoic, prograding deltas 
and slope systems developed during periods of sea-level fall forming sand-prone successions that accumulated gas which 
is this paper’s main object of study. 

To study this interval, the seismic data F3 Block was used. It corresponds to a 3D streamer survey of approximately 
386km² stacked time migrated data, containing 651 inlines and 951 crosslines. The survey follows the geometry: 25m 
inline spacing, 25m crossline spacing, and 4ms sample interval. The data illuminates up to 1.848 seconds (SILVA, 2019). 
 
3. Seismic attributes 

Estimating rocks' physical properties through the acquisition and processing of seismic data and analyzing their vertical 
and lateral variation in time, space, and frequency domains constitute the basis for seismic interpretation (NANDA, 2021). 
As Taner et al. (1979) stated, seismic attributes can be defined as any observations extracted from seismic data that directly 
or indirectly aid hydrocarbon exploration. Besides that, calculating seismic attributes can be seen as the application of 
filters that remove particular components of the seismic signal to highlight others (BARNES, 2016). These quantities 
support seismic interpretation by revealing hidden structural features, such as faults and fractures (HESTHAMMER & 
FOSSEN, 1997), and the basement's boundaries; identifying strata terminations; highlighting reflector’s continuity; 
discretizing seismic facies (BAGHERI & RIAHI, 2015); detecting gas hydrate presence (CLAIRMONT et al., 2021), as 
well as aiding in the mapping of DHI anomalies (RODEN & CHEN, 2017). 

Seismic attributes have been frequently used as input data for different algorithms whose purpose is pattern recognition 
or cluster analysis. As per Barnes and Laughlin (2002), the accuracy of the pattern recognition results is primarily related 
to the choice of the set of seismic attributes to be used. Except for the increasing computation cost, there are no limitations 
to the number of seismic attributes used for clustering analysis. However, the exaggeration of this choice can be harmful 
to the result. It will reduce the interpretability of the method and favor redundancy in the input data (BARNES, 2016). 

In order not to promote an exhaustive search for the ideal set of seismic attributes through successive tests using the 
combination of dozens of attributes developed to date, the decision regarding which to use in this research is initiated by 
the connection between the knowledge of the expected response of each attribute for the identification of DHI anomalies 
and the guidance found in specialized literature (RODEN & CHEN, 2017). A similar strategy can be found in Ismail et al. 
(2023), where the authors assess geometric and curvature attributes that provide detailed information on structural 
discontinuities to enhance fracture network interpretation.  

Since the geometric, spectral, and amplitude settings stand out in characterizing DHI anomalies in seismic images, the 
set of attributes chosen as input to the clustering algorithms highlight characteristics of this nature, as recommended by 
Infante and Marfurt (2019). The gas anomalies giving rise to major accumulations in the Central Graben Basin are 
correlated with the intense fracturing of layers underlying the reservoirs, forming gas chimneys (DE BRUIN et al., 2022). 
Coherence in the vicinity of a seismic trace can provide clues to such zones. The presence of this fluid in rocks and 
lithological variability within the petroleum system also suggests that relative acoustic impedance may contribute to the 
segmentation of DHI anomalies. Furthermore, the drastic reduction in spectral content in DHI zones reinforces the use of 
attributes associated with frequency response. Finally, these anomalies are often linked to high seismic amplitudes. Hence, 
it was determined that the cubes of attributes extracted from the amplitude data would be the Reflection Strength, Relative 
Acoustic Impedance, Similarity, Logarithm of Sweetness, and Spectral Decomposition (25Hz and 45Hz). Together, these 
features will support a multi-attribute analysis to identify class 3 DHI anomalies, since their properties allow us to verify 
anomaly consistency and conformance to downdip structure, phase change at downdip edge of anomaly, and flat spots 
(RODEN & CHEN, 2017). Class 2 anomalies require an appropriate AVO observation, however partial stacks were not 
available. Table 1 shows the category they are included in and their enhanced features, meanwhile Figure 2 shows the 
seismic attributes on FS8 seismic horizon.This seismic horizon is freely provided by dGB Earth Sciences via TerraNubis 
portal and marks the top of FS8 reservoir (Adeoti et al., 2023). It is inserted in a context of plane-parallel reflectors with 
high amplitude. 
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Table 1 – Seismic attributes extracted to be the input data in the multi-attribute approach. 
Seismic Attributes Category* Application 

Relative Acoustic Impedance Seismic inversion Amplitude anomalies; DHI; 
channels; stratigraphy; lithology  

Logarithm of Sweetness Highlighting amplitudes Amplitude anomalies; DHI; 
stratigraphy 

Reflection Strength Instantaneous Amplitude anomalies; DHI; 
channels; shadow zones; stratigraphy 

Coherence Geometric Continuity; faults and fractures; 
channels; stratigraphic variations 

Spectral Decomposition – 25 Hz Frequency Channels; shadow zones; frequency 
content 

Spectral Decomposition – 45 Hz Frequency Channels; shadow zones; frequency 
content 

Fonte: Brown (1996). 
 

4. Machine learning algorithms 

Machine learning is a subarea of artificial intelligence whose focus remains on developing algorithms that automate 
tasks and improve their performance with experience (MITCHELL, 1997). According to James et al. (2013), most 
statistical learning problems can be classified into two categories: supervised and unsupervised. The dimensionality 
reduction and cluster analysis algorithms applied in this work are classified as unsupervised, in which there is no associated 
response for each observed sample. The objective of cluster analysis is to verify if certain samples have similar 
characteristics that are capable of differentiating them from others present in the dataset. In this section, we present the 
operating principles of the Principal Component Analysis (PCA), K-Means, Gaussian Mixture Model (GMM), and 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithms. 

 
4.1. Principal Component Analysis (PCA) 

PCA is a data analysis tool often used to perform dimensionality reduction and data filtering (DEISENROTH et al., 
2020). It is a simple non-parametric method for extracting relevant information from a large dataset. In other words, this 
algorithm provides a way to mitigate the complexity of a problem by finding the most meaningful form to express a set of 
variables that make up a given system and describe one or more events (SHLENS, 2014).   

PCA performs a linear transformation on the dataset to project it on a subspace of lower dimensionality (LEVER et al., 
2017). The algorithm's output yields an optimized representation of the original data by retaining as much information as 
possible through a reduced set of variables known as principal components. 

Let X be a data matrix normalized by the mean and standard deviation, with dimension 𝑁 𝑥 𝑀, in which N and M are 
the numbers of samples and variables, respectively. Its covariance matrix Sx is given by Equation 1: 

 

𝐒𝐗 =
1

𝑁 − 1
𝐗𝐗் . (1) 

It is possible to obtain a matrix Y capable of representing X in the principal component’s domain, so that: 
 

𝐘 = 𝐏𝐗, (2) 

In which  𝐘 = [𝒚𝟏, … , 𝒚𝑴]𝑻  contains the principal components, and the matrix 𝐏 = [𝒑𝟏, … , 𝒑𝑴]𝑻  represents the 
eigenvectors of the matrix 𝐒𝐗. The matrix P is responsible for translating and rotating the original set of attributes to 
determine the orthogonal base that maximizes the variance of the elements of Y, and that better restates the datum in the 
domain of principal components (DEISENROTH et al., 2020). 
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Figure 2 – Seismic attributes used as input of the clustering analysis: (a) Similarity, (b) Reflection Strength, (c) Relative 
Acoustic Impedance, (d) Spectral Decomposition (25 Hz), (e) Logarithm of Sweetness, and (f) Spectral Decomposition 

(45 Hz). 
Source: Authors (2024). 

 
4.2. K-Means 

The K-Means algorithm is a clustering method that aims to segment a set of unlabeled data into a previously defined 
𝐾 number of groups. After this selection, it is verified that each point belongs to one and only one cluster in such a manner 
that similar samples are clustered and related to a centroid (JAMES et al., 2013). The centroids are objects that store all 
the feature's means for each 𝐾 cluster (TAN et al., 2016). In other words, considering the matrix 𝐗, defined following the 
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same patterns as outlined in the preceding subsection, the K-Means algorithm aims to perform data partitioning in 𝐾 
distinct clusters that share characteristics similar to centroids 𝝁. This objective is realized by ensuring that each centroid 
is correctly positioned within the observation space, aiming to minimize the intragroup variance across all clusters. The 
variance 𝑉𝑎𝑟  of a cluster 𝐶  is the measure of how its observations differ (JAMES et al., 2013). The mathematical 
description of the intragroup variance used in this work is related to the notion of Euclidean distance. As specified by 
Bishop (2006), it can be seen as the sum of the Euclidean distance between every sample 𝒙 that belongs to the Kth group 
and its respective centroid 𝐶 , divided by the total number of observations 𝑁. Equation 3 presents the intragroup variance 
as described below: 

 

𝑉𝑎𝑟(𝐶) =
1

𝑁
 ‖𝒙 − 𝝁‖ଶ



ୀଵ

 

ே಼

∀𝒙∈
ୀଵ

. (3) 

Under these circumstances, the function to be minimized by the K-Means algorithm is defined as: 
 

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆
𝐶ଵ, … , 𝐶

൞𝑉𝑎𝑟(𝐶) =
1

𝑁
 ‖𝒙 − 𝝁‖ଶ



ୀଵ

 

ே಼

∀𝒙∈
ୀଵ

ൢ . (4) 

4.3. Gaussian Mixture Models (GMM) 

The GMM is considered a simple linear superposition of Gaussian components that aims to establish a grouping of 
density models that is more informative than that generated by a single normal distribution (BISHOP, 2006). In the one-
dimensional domain, a Gaussian probability distribution 𝒩(𝑥|μ, σଶ) of a variable 𝑥 is given by: 

 

𝒩(𝑥|μ, σଶ) =
1

2𝜋𝜎ଶ
𝑒𝑥𝑝 ൜−

1

2𝜎ଶ
(𝑥 − 𝜇)ଶൠ , (5) 

In which 𝜇 and 𝜎 are the mean and variance, respectively. The generalization to the M-dimensional domain is based 
on the concept of covariance matrix 𝚺 (BISHOP, 2006). Considering the matrix 𝐗, its Gaussian distribution is defined as 
per Equation 6. 

 

𝒩(𝐗|𝛍, 𝚺) =
1

(2𝜋)
ெ
ଶ

1

|𝚺|
ଵ
ଶ

𝑒𝑥𝑝 ൜−
1

2
(𝐗 − 𝝁)்𝚺ିଵ(𝐗 − 𝝁)ൠ (6) 

Analogously to Equation 5, 𝝁 is the mean of the data matrix, 𝚺 and |𝚺| are the covariance matrix and its module, 
respectively. 

According to Deisenroth et al. (2020), the GMM algorithm provides a probability density model in which a finite 
number of 𝐾 normal distributions are combined in such a way that the distribution equation of Gaussian mixtures 𝑝(𝐗) 
(Equation 7) be satisfied. 

 
  

𝑝(𝐗) = ∑ 𝝅

ୀଵ 𝒩(𝐗|𝛍୩, 𝚺୩).  (7) 

In this equation, 𝜋 is the weight assigned to the occurrence of each normal distribution. The purpose of the GMM 
algorithm is to optimize the parameter set 𝛉 ≔  {𝝅, 𝝁 , 𝚺: 𝑘 = 1, … , 𝐾 } to maximize the likelihood function through an 
Expectation-Maximization method, described in Equation 8: 

 
𝑙𝑜𝑔൫𝑝(𝐗|𝛍୩, 𝚺)൯ = ∑ 𝑙𝑜𝑔൫∑ 𝝅


ୀଵ 𝒩(𝐗|𝛍୩, 𝚺୩)൯.ே

ୀଵ  (8)  
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It is possible to calculate the probability that a sample belongs to one of the normal distributions of the mixture model. 
For this purpose, the quantity 

 

𝑟 =
𝝅𝒩(𝐗|𝛍୩, 𝚺୩)

∑ 𝝅

ୀଵ 𝒩(𝐗|𝛍୩, 𝚺୩)

 (9) 

Is defined as the responsibility of the Kth component of the mixture by the nth instance in the distribution. The 
responsibility, as defined in the preceding molds, is directly proportional to the probability of the nth sample of the 
distribution belonging to the Kth component of the mixture. Therefore, one of the Gaussian distributions of the mix has 
high responsibility over a sample when, most likely, that sample belongs to this Gaussian component (BISHOP, 2006). 

 
4.4. Density Based Spatial Clustering of Applications with Noise (DBSCAN) 

First introduced by Ester et al. (1996), the DBSCAN algorithm assumes that a sample belongs to a cluster only if its 
neighborhood, defined by a radius ϵ, contains a minimum number of points (MinPts). In other words, the spatial density 
of points in its vicinity must exceed a threshold value. This principle is employed to recognize patterns in a dataset and 
segment it into informational subgroups with arbitrary shapes, considering the typical relationship between a sample cloud 
and the spatial density of noisy points (ESTER et al., 1996). In the same work, the authors define concepts such as ϵ-
neighborhood, reachable and directly reachable points, core points, among others. These concepts are essential for 
understanding how DBSCAN can distinguish genuine clusters from noisy samples. 
 
5. Methodology 

Figure 3 shows the workflow used for all experiments, including K-Means and Gaussian Mixture Models clustering 
analysis and the subsequent spatial density filtering. All workflow was implemented in Python, and the OpendTect 
software was used only to visualize the results. Key steps in this process will be briefly detailed below. 

 
5.1. Study interval selection 

Although it was possible to use all samples from the seismic cube, in this approach, cluster analysis was conducted 
within a delimited area of interest defined by two seismic horizons. Besides reducing computational costs, this focus is 
influenced by geological factors. For instance, Schroot and Schüttenhelm (2003) state that the primary hydrocarbon 
accumulations in the Dutch North Sea are associated with unconsolidated Miocene clastic sediments. Therefore, the upper 
limit of our study is the FS8 horizon, while the lower is the MFS4 horizon. We used 25 samples above the FS8 surface and 
the same amount below the MFS4 to delimit the area of interest, i. e. 100ms above and below the limits. 

 
5.2. Data preprocessing 

Seeking to eliminate null samples and spurious values, i.e., those lacking geophysical-geological significance. For each 
selected seismic attribute, we analyzed the interquartile amplitude of the distribution, aiming to assess the statistical 
dispersion of samples within a dataset around its central measure. 

 
5.3. Principal Component Analysis (PCA) 

Once the seismic attributes were preprocessed, the normalized by mean and variance dataset became the input for 
dimensionality reduction using the PCA algorithm. After assessing the explained variance ratio, it was determined that 
four principal components can explain 92.83% of the original dataset, as depicted in Figure 4. 
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Figure 3 – Workflow applied to perform the seismic attributes clustering analysis over a 3D dataset. 

Source: Authors (2024). 
 

 
Figure 4 – Normalized percentage variance of each principal component and cumulative percentage variance applied to 

determine the total number of principal components. 
Source: Authors (2024). 

 
5.4. Clustering Algorithms 
 

The multi-attribute cluster analysis is the first step of the combined approach used in this work. 60% of the dataset 
samples were randomly selected to compose the training set of the K-Means and GMM models. Next, the labels of the 
remaining samples were inferred. Finally, according to the methodology proposed by Troccoli et al. (2022), the obtained 
labels are organized concerning the origin to preserve some degree of similarity between the nearest centroids, adopting 
Euclidean distance as a comparison metric. 

 
5.5. Validation Criteria 

Using statistical tests to estimate the potential number of clusters that optimizes the dataset sample’s segmentation. 
Once the elbow method could not present a satisfactory indication of this parameter due to the nature of the dataset, the 
Davies-Bouldin Index was also calculated (Figure 5). It suggested K = 5 as the optimal parameter for both algorithms. 
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Although the validation criterion is an essential stage for this methodological procedure, in this problem, we must consider 
the geological features, as well as the work’s objective. The visualization of the clustering results pointed out that five 
groups were not able to isolate DHI anomalies. Setting K = 7 best met this objective: isolated DHI anomalies and showed 
a high correlation with the geomorphological features. 

 

  
Figure 5 – Davies-Bouldin Index per number of clusters. 𝐾 = 5 minimizes the metric for both (a) K-Means and (b) 

Gaussian Mixture Model algorithms, suggesting this is the optimal quantity of clusters.  
Source: Authors (2024). 

 
 5.6. Filtering based on spatial density 

In this second step, the DBSCAN algorithm aimed to comprehend the spatial distribution of DHI cluster samples, 
enabling the filtration of spurious points and low-spatial density zones. During this phase, the input data consists of 
normalized coordinates and time samples, ranging from zero to one, for instances interpreted as DHI. A series of 
experiments were conducted to fine-tune the model's hyperparameters, resulting in an  𝝐-neighborhood radius of 0.01 and 
a minimum of 500 points for optimal performance. Under the specified initial conditions, the algorithm determines the 
number of subgroups, the sample count within each subgroup, and the identification of samples as noise. These subgroups 
are then organized in descending order based on the number of samples, with the top 12 being assigned the DHI label, 
while the remaining samples are categorized as noise. It is important to note that this numerical threshold may vary 
depending on the specific study region. Consequently, the expectation is that the DHI cluster will be entirely isolated 
within the anomalous zones. 
 
6. Results and discussions 

This section presents the clustering results derived from both K-Means and Gaussian Mixture Model algorithms. It also 
provides adequate discussions regarding the application of each technique in mapping direct hydrocarbon indicators 
anomalies and the association of multi-attribute cluster analysis with filtering based on spatial density. Once the 
preprocessing, dimensionality reduction, and validation steps were fulfilled, a visual analysis of the clustering results was 
made by varying the number of groups between three and eight. The optimized models have the following configuration 
(Table 2). 
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Table 2 – Parameters of the optimized models. 
Algorithm Seismic Attributes Principal Component Number of Clusters 

K-Means 
Logarithm of Sweetness, Coherence, Acoustic 

Impedance, Reflection Strength, Spectral 
Decomposition (25 and 45 Hz) 

4  5 

GMM 
Logarithm of Sweetness, Coherence, Acoustic 

Impedance, Reflection Strength, Spectral 
Decomposition (25 and 45 Hz 

4 7 

Source: Authors (2024). 
 

The acoustic response related to the presence of hydrocarbons characterizes a DHI when associated with a trapping 
configuration, identified, in this case, by low frequency shadow zones or velocity pull-down effects (RODEN & CHEN, 
2017). Schroot and Schüttenhelm (2003) state that the Dutch North Sea presents a series of gas-related phenomena whose 
seismic expression resembles those mentioned above. Fault related amplitude anomalies, gas chimneys, buried gas-filled 
ice-scours, and mostly bright spots are among the seismic events interpreted in the area (SCHROOT & SCHÜTTENHELM 
(2003); SCHROOT et al., (2005); CONNOLLLY (2015)).  

Looking at the clustering result over the FS8 horizon (Figure 6b), it is found that the K-Means algorithm, followed by 
the labels organization, assigned more than one label (0 and 2) to two zones with either bright spot and fault-related seismic 
anomaly, previously interpreted by many authors (SCHROOT & SCHÜTTENHELM (2003); SCHROOT et al., (2005); 
CONNOLLLY (2015); DE BRUIN et al., (2022)). In addition, group 2 extends over much of the FS8 horizon, which 
suggests that this group was defined predominantly by the similarity of its samples concerning amplitude attributes, such 
as Reflection Strength and Logarithm of Sweetness, in detriment to the set of aspects that characterize DHIs. This behavior 
is repeated throughout the analyzed interval. Because it is a prototype-based clustering algorithm, all members of the 
cluster associated with a given centroid should be close to their corresponding prototype (PATEL & KUSHWAHA, 2020). 
For K-Means, the optimal distribution of samples in space consists of well-separated spherical groups. Therefore, the 
construction of the algorithm's minimization problem may suggest difficulties on clustering sets of samples that overlap in 
the four-dimensional space of the principal components used here. Thus, the algorithm proved ineffective in isolating DHI 
anomalies in the region. 
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Figure 6 – (a) Original seismic amplitude; clustering results derived from (b) K-Means, (c) Gaussian Mixture Model, 

and (d) the joint application of GMM and filtering based on spatial density. 
Source: Authors (2024). 

 
The expectations created by the robustness of the Gaussian Mixture Model algorithm began to be achieved by observing 

the clustering result on the seismic horizon, as shown in Figure 6c. After organizing labels concerning the origin, to the 
DHI class of samples was assigned label 6, seen in gray. It is possible to notice that the GMM was way more effective in 
delimiting DHI anomalies zones than K-Means. Based on probability density estimations, each cluster is modelled as a 
Gaussian distribution with its particular mean and standard deviation, which guarantee that GMM will provide a better 
quantitative measure of fitness per number of cluster (PATEL & KUSHWAHA, 2020). As a reflection of this, there is the 
behavior of the class interpreted as DHI in Figure 6c. The most prominent anomalies are confined in this class, so that the 
set of attributes used to construct the hyperspace of principal components and that highlight structural, phase, frequency, 
and amplitude characteristics seems to have had a strong influence on this phenomena’s segmentation. 

Even though it was not the primary objective of this work, the GMM model made it possible to correlate clusters to 
interesting features such lithological variations, faults, and fractures. The latter may be related to class 1, seen in dark blue, 
as noticeable in the main fault and at the northeastern zone of the seismic horizon, a raised region with intense fault 
presence due to the halokinesis of the Zechstein Formation (MAUNDE & ALVES, 2022). It becomes clearer on Figure 7, 
where a vertical section view – Inline 668 - of the results is shown. It is a window, indicated by the red polygon, of the 
same inline that appears on Figure 6a. It can be seen that the presence of the cluster interpreted as DHI are often associated 
with the fault system, alongside with the class 1. It can indicate migration pathways from deeper sources to shallow gas-
related DHI anomalies, in agreement with the hypothesis that establishes a relationship between these accumulations and 
deeper structures, as discussed by De Bruin et al. (2022). On the other hand, samples of the same class appear dispersed 
in other regions of the section that are not necessarily related to fractures or faults. This fact leads us to the possibility that 
low coherence zones are strongly influencing the conformation of this cluster, since the model was not optimized for this 
purpose.  



Barbosa, M. R. S; Carneiro, V; Cerqueira, A. G,, Northeast Geosciences Journal, Caicó, v.10, n.2, (Jul-Dec) p.298-315, 2024.        310                     

_________________________________________________________________________________________________ 

 

As stated earlier, the organization of labels assigns a similar character to clusters represented by close colors in the 
color palette. This effect can be observed in groups 4 and 5, in yellow and orange (Figure 6c), possibly related to 
lithological variations. 

Although the goal of isolating DHI anomalies had been reasonably achieved by the GMM model, it seems there are 
still regions whose distribution does not ratify their classification within the target cluster. The apparent paleochannel could 
be an example of this drawback. The DBSCAN’s effect is clear in Figure 6d, where it is possible to observe that both 
samples associated with the paleochannel and the gas-filled ice-scours, which in this case presents a typical pattern of 
straight lineaments with N-S orientation (SCHROOT & SCHÜTTENHELM, 2003) were generically relabeled as 
“reclassified” and represented in gray (now, Group 7). Here, it is observed that the joint application of unsupervised 
algorithms was able to distinguish between anomalies characterized as bright spots and other gas-related seismic 
manifestations. It occurs due to the fact that the latter are regions containing low spatial density of samples. On Figure 7 a 
similar effect take place on the fractured zone. Besides that, the DBSCAN could also provide a noise removal outcome, 
since a few sparkling samples, found on TWTs superior to 800ms, were visibly relabeled. It will be a key point on 3D 
visualization, as follows.  

  

 
Figure 7 – Clustering results seen in a window from inline 668 obtained from the joint application of the filtering based 

on spatial density on samples labeled as DHI by the GMM algorithm. 
Source: Authors (2024). 

 
From a 3D perspective, the GMM-labeled DHI samples pollute the extent of the seismic survey entirely, impairing the 

three-dimensional visualization of this work’s targets, as can be seen in Figure 8a. The improvement in the DHI anomalies’ 
visualization in this perspective after the filtering based on spatial density is evident (Figure 8b). The geobodies composed 
by the labels interpreted as DHI present a much cleaner aspect, in comparison to the previous result.   
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Figure 8 – The result of applying spatial density filtering through the DBSCAN algorithm on cluster 6’s samples. The 

two seismic horizons were added to give the idea of the spatial location of each anomaly. 
Source: Authors (2024). 

 

7. Final remarks 

This study introduces a novel methodology designed for clustering analysis on 3D seismic data to map direct 
hydrocarbon indicators (DHIs). By employing two unsupervised machine learning algorithms, K-Means and the Gaussian 
Mixture Model (GMM), the research examines the individual performances of each technique and explores the benefits of 
integrating the multi-attribute approach with spatial density-based filtering via the DBSCAN algorithm. 

It was observed that using statistical tests, such as the elbow method or the Davies-Bouldin index, to determine the 
optimal number of clusters for the models was not efficient, at least when the study's goal is to segment a specific geological 
event or feature like DHI anomalies. Possibly, in an exploratory approach, optimizing this hyperparameter through 
statistical tests could be a good starting point. 

The K-Means algorithm showed limitations in accurately delimiting the DHI anomalies. It assigned more than one 
class to regions of known DHIs. These facies are distributed across extensive regions of the seismic survey, suggesting 
that this group was defined only by the similarity of the amplitude content of their samples, to the detriment of the 
characteristics expressed by the DHIs. In contrast, the Gaussian Mixture Model achieved good results in identifying this 
work's targets. With a model composed of seven clusters, it could accurately delimit DHI anomalies. In addition, it 
efficiently highlighted other geological features, such as faults and fractures, paleochannels, and groups related to 
lithological variation. 

The subsequent application of spatial density-based filtering to samples labeled by the GMM algorithm and interpreted 
as DHI - the heart of the joint clustering - identified subgroups of low spatial density. Thus, the DBSCAN algorithm offered 
the conditions to re-label these samples and increase the accuracy of the anomaly mapping. Based on these results, 
geobodies could be generated, and the perspective of three-dimensional observation became noise-free. This methodology 
is expected to be adapted and employed in other sedimentary basins to assist geophysicists in interpreting possible 
anomalies caused by oil and gas. 
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