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Abstract: This paper aims to present predicting models for the shear stress and dilation in rock discontinuities by using artificial 

neural networks with radial basis functions. These models were developed based on a database obtained from 116 large-scale direct 

shear tests carried out on different types of discontinuities and boundary conditions. The input variables of the proposed models are 

the external normal stiffness, the initial normal stress, the roughness of the discontinuity, the uniaxial compressive strength of the 
intact rock, the thickness and the friction angle of existing infill material,  the basic friction angle and the shear displacement imposed 

on the rock discontinuity. The results have shown that the RBF networks are capable of satisfactorily estimating the shear behavior of 

rock discontinuities, once coefficients of determination greater than 0.98 were obtained in the training and testing phases. In addition, 

the performance analyses of the models have shown that they can represent the influence of the input variables  on the shear behavior 

of rock discontinuities. It can therefore be concluded that the models obtained are useful and simple tools for predicting the shear 
behavior of rock discontinuities. 

 

Keywords: Neural Network Artificial; Radial Basis Function; Rock Discontinuities. 

 

Resumo: Este artigo tem como objetivo apresentar modelos  de predição da tensão cisalhante e dilatância em descontinuidades 
rochosas por meio de redes neurais artificiais que empregam funções de base radial.  Para tanto, foi utilizado um banco de dados obtido 

de 116 ensaios de cisalhamento direto em grande escala realizados em diferentes tipos de descontinuidades e condições de cont orno. 

As variáveis de entrada dos modelos propostos são a rigidez normal externa, a tensão normal inicial,  a rugosidade da descontinuidade, 

a resistência uniaxial da rocha intacta, a espessura do preenchimento, o ângulo de atrito do material de preenchimento, quando houver, 

o ângulo de atrito básico e o deslocamento cisalhante imposto na descontinuidade. Os resultados mostraram que as redes RBF são 
capazes de estimar de forma satisfatória o comportamento cisalhante das descontinuidades rochosas uma vez que foram obtidos 

coeficientes de determinação superiores a 0,98 nas fases de treinamento e teste. Além disto, nas análises de desempenho dos modelos 

observou-se que eles são capazes de representar de forma coerente a influência das variáveis de entrada no comportamento cisalhante 

das descontinuidades rochosas. Logo, pode-se concluir que os modelos obtidos se apresentam como ferramentas úteis e simples para a 

previsão do comportamento cisalhante de descontinuidades rochosas. 
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1. Introduction 

Over the last few decades there has been a great effort to develop models for predicting the mechanical behavior of 

rock masses that realistically  consider the influence of the main  parameters that govern the shear mechanism in these 

rock structures. In this sense, several analytical models have been proposed based on large-scale direct shear tests carried 

out on different types of discontinuities and boundary conditions, including the proposals of Barton (1973, 1976) , 

Ladanyi and Archambault (1969), Barton and Choubey (1977), Skinas, Bandis and Demiris (1990), Indraratna and 

Haque (2000), Indraratna, Oliveira and Brown (2010), among others. The results obtained in these studies indicated that 

the shear behavior of rock d iscontinuities is governed by the following factors: filling material, roughness, imposed 

boundary conditions, as well as the characteristics of the intact rock.  

Despite satisfactorily representing the shear behavior of rock d iscontinuities for the con ditions in  which they were 

developed, the various existing analytical models present numerous limitations, given the difficulties in obtaining the 

parameters necessary for their applicat ion (DANTAS NETO et al., 2017;  LEITE et  al, 2019a; MATOS, 2018). In th is 

way, there is a need to employ alternative methods that allow the predict ion of the shear behavior of rock discontinuities 

in a practical and simple way, but that consider all their governing variables. In this regard, we can mention artificial 

neural networks (ANN), which have shown good performance in solving complex, mult ivariate, and non -linear problems, 

with increasingly frequent use in geotechnical engineering. In rock mechanics, numerous works demonstrate the capacity 

of these tools in predicting parameters (MAJDI; REZAEI, 2013; SAYADI et al., 2013; ZHOU et al., 2020).  

Regarding the shear behavior of rock discontinuities, the works of Dantas Neto et al. (2017), Leite et al. (2019a), and 

Leite et al. (2019b) used mult ilayer perceptrons (MLP) in  the development of predict ion models. The results obtained by 

these authors showed that neural models have provided results that are closer to experimental data than the estimates 

made by analytical models. However, as MLPs have complex architectures and are designed to perform a g lobal 

approximation of the input-output mapping, with all parameters being computed at the same time, a high computational 

effort is required, resulting in a slower learning process compared  to that obtained with other types of ANNs (SOARES; 

TEIVE, 2015; FERREIRA, 2020). 

In this context, radial basis function (RBF) networks are an alternative to the tools used to estimate the shear behavior 

of rock discontinuities due to their ability to adequately deal with non-linear problems with a single hidden layer, 

enabling the training process (network parameter ad justments), whose computational effort  is significantly lower when 

compared to other types of artificial neural networks, especially MLPs, as highlighted by Gan, Peng, and Chen (2012) , 

Ferreira (2020), and Souza, Batista, and Silva (2021).  

In relation to  the less intensive computational effort presented by RBF, for a given input vector, typically only  a few 

hidden neurons will present significant activations, which makes its training faster, unlike the MLP, which presents a 

more complex connectivity pattern since it is based on multip le layers of neurons. In addition, the process of estimating 

the parameters (weights and thresholds) is sequential, requiring several passes through all t he samples in the training set. 

This, in turn, requires a h igh computational effort due to the need to back-propagate the error, resulting in  a slow 

convergence learning curve when compared to the RBF network (VIEIRA; LEMOS; LING, 2003; BISHOP, 1997; 

HAYKIN, 2009). This network d ivides its training into two very distinct and fast -executing phases, not relying on a 

training process lasting several epochs as required by the MLP network. Furthermore, the RBF network has only two 

hyperparameters, namely, the number of hidden neurons and the common width of the Gaussian basis functions. The 

MLP network requires the specification of several hyperparameters, such as the number of hidden layers, the number of 

neurons in each hidden layer, the learning rate, the momentum factor, and the number of training epochs. Regarding its 

application, several authors have highlighted the potential of RBF networks in predicting geotechnical parameters (QIN 

et al., 2018; MENDES, 2021; SAYADI et al., 2013).   

Therefore, this article aims to present models developed with neural networks of the radial basis function type to 

predict the shear behavior of rock d iscontinuities as a function of their governing variables, namely, the shear 

displacement, the boundary conditions represented by the tension initial normal and normal boundary stiffness, and the 

characteristics of the discontinuities, such as roughness, basic friction angle, uniaxial compressive strength of the intact 

rock, t/a ratio for the fill, and internal frict ion angle of the fill material, when applicable. case. In  this case, the use of 

RBF networks aims  to take advantage of their ability  to model complex and  non -linear phenomena in a simpler way, 

with less computational time and better performance than those obtained with o ther types of ANN. 
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2. Radial Basis Function (RBF) Neural Networks  

An ANN is formed by a set of artificial neurons distributed in multip le layers linked together by synaptic connections 

whose function is to transmit  signals from the input layer to the output layer, with the responses of the artificial neurons 

being given by activation functions, which can be mentioned the linear, sigmoidal, hyperbolic tangent functions, among 

others (HAYKIN, 2009). Considering the main advantages of ANN, the ability to universally approximate functions 

stand out, which is used to establish input-output relationships through a data-based learning process. Once subjected to 

an appropriate training process, the network has the ability to generalize knowledge about the modeled phenomenon, 

allowing predictions to be made for input patterns different from those used during the adjustment of the network 

parameters (GETAHUN; SHITOTE; ABIERO GARIY, 2018). 

There are different types of ANN, each with its own architecture and learning algorithms (TURCATO, 2015). 

Among them, we can mention the simple perceptron, which is characterized as the simplest architecture of an ANN and 

whose processing occurs in a single layer, whose neurons are activated by non -linear functions (HAYKIN, 2009). One 

can also mention multilayer perceptrons (MLP), which can be considered an extension of the simple perceptron with the 

ability to interpolate non-linear and more complex prob lems due to the presence of one or more layers of h idden neurons. 

In general, MLP networks are the most used in geotechnics, as highlighted by Erzin, Rao, and Singh (2008), probably 

due to their ability to allow the modeling of non-linear and complex multivariate phenomena due to the use of a greater 

number of non-linear hidden layers and neurons.  

Neural networks that use radial basis functions (RBF) also present a structure in which information is propagated 

from the input layer to the output layer, however, without feedback loops (SOUZA, BATISTA, SILVA, 2021). Unlike 

other types of neural networks, an RBF uses radial basis functions as the activation  function of hidden layer neurons, 

which are characterized as non-linear functions (KAWASE, 2015). However, the connection between the neurons of the 

hidden layer and the output layer is made through linear neurons, making such networks have a simpler stru cture and 

learning process than that used in MLP. Among the different types of radial basis functions are linear, cubic, Gaussian, 

multiquadric, and inverse multiquadric functions (MENDES, 2021). 

In general, an RBF network can be used for practically  every  type of problem handled by an MLP 

(CHAOWANAWATEE; HEEDNACRAM, 2012). Because it has a simple topological structure, fast training, good 

generalization, and an output activated by a linear function, the RBF network becomes a competit ive alternative to MLP 

networks in modeling engineering problems (NASERI, TATAR, and SHOKROLLAHI, 2016). 

According to Haykin (2009), the basic structure of an RBF network includes three layers: the first layer refers to the 

input of the ANN, consisting of the nodes into which information from the input variables is fed and which will be 

propagated to the second layer. Hidden; the second layer of the network is the hidden layer, in which a non -linear 

transformation of the input space is carried out using radial basis functions to activate its constituent neurons; and the 

output layer returns the ANN response through a linear transformation from the high -dimensional space of the h idden 

layer to the (usually) low-dimensional space given as a function of the modeled problem. 

Figure 1 shows a schematic representation of the structure of an RBF network in which x corresponds to the input 

vector of dimension n; 𝜑𝑖 refers to the i-th radial basis activation function, i=1, 2, …, q, whose value increases with 

decreasing distance of the input vector x in relat ion to the center 𝝁𝑖 that defines the position of the i-th radial basis 

function in the input space. Each hidden neuron is centered on a particular coordinate of the mult idimen sional input 

space. Thus, each of these coordinates is characterized by defining the center of a region of greater agglomeration of 

points, or cluster, in the input data space. Thus, the centers of the radial basis functions are determined as part of the 

learning process and their quantity and position must cover a representative set of the data sample (NEVES; 

CARVALHO, 2010). The parameter  𝜔𝑖  corresponds to the synaptic weight that connects the i-th hidden neuron (or 

equivalently, the i-th basis function) to the output y by means of the linear transformation mentioned above, representing 

the network's response to the input vector  𝐱. 

According to Soares and Teive (2015) and Souza, Batista and Silva (2021), the radial basis function commonly used 

for the hidden layer neurons is the Gaussian function, which is given by: 

 

𝜑(𝐱, 𝝁𝑖) = 𝑒𝑥𝑝 (−
||𝐱−𝝁𝑖||

2

2𝜎2
)                                                              (1) 
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Where ||𝐱 − 𝝁𝑖 || is the Euclidean distance between the input vector (𝐱) and the center 𝝁𝑖  of the i-th radial basis 

function. The width parameter 𝜎  (a.k.a., radius) defines the receptive field of the Gaussian radial basis functions. This 

parameter is named spread in the Matlab’s newrb function which was used to implement the RBF version in this paper. 

 According to Heshmati et al. (2009), RBF networks with a Gaussian radial basis function are universal 

approximators, that is, they are capable of approximat ing non-linear input-output mappings with a good degree of 

accuracy. Regarding the output layer, the response of the RBF network is calculated as a linear combination of all the 

outputs of the radial basis functions. Therefore, the ANN response (y) is represented by the sum of the outputs of the q 

Gaussian functions weighted by their synaptic weights (𝜔𝑖 ) plus the threshold (𝜔0 ), as shown in the following equation: 

 

𝑦(𝐱) = ∑ 𝜔𝑖𝜑(𝐱, 𝝁𝑖
) + 𝜔0

𝑞
𝑖=1                                                                (2) 

 

 
Figure 1 – General architecture of a single-output RBF network.  

Source: Haykin (2009). 

 

3. Materials and methods 

3.1. Definition of input variables 

In general, it is observed that the boundary conditions acting on a rock d iscontinuity, its roughness characteristics, 

presence of filling and its resistance parameters, properties of the intact rock and level of shear displacement are the main 

factors that govern the shear behavior of discontinuities in rock masses (INDRARATNA; OLIVEIRA; BROWN, 2010; 

OLIVEIRA; INDRARATNA, 2010; PAPALIANGAS et al., 1993; SKINAS; BANDIS;  DEMIRIS, 1990).  

Therefore, for the development of the shear behavior pred iction models, the following were adopted as input 

variables: the contour normal stiffness (kn), the ratio between  the thickness of the fill and the height of the asperity (t/a), 

the initial normal stress (σn0), the roughness coefficient of the discontinuity (JRC), the uniaxial compressive strength of 

the intact rock (σc), the basic friction angle (ϕb), the friction angle of the fill (ϕ fill) and the shear displacement (δh). The 

output variables of the proposed models are the shear stress (𝜏𝑠) and the d ilat ion (𝛿𝑣) as representative parameters of the 

shear behavior of rock discontinuities. 
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3.2. Database 

The data used to develop the neural models was obtained from the results of 116 la rge-scale direct shear tests 

presented in the works by Benmokrane and Ballivy (1989), Skinas, Bandis and Demiris (1990), Papaliangas et al. (1993), 

Haque (1999), Indraratna and Haque (2000), Oliveira (2009), Indraratna, Oliveira and Brown (2010), Mehrishal et  al. 

(2016) and Shrivastava and Rao (2017). 

The database has a total of 2098 input-output examples. Of these, 58% correspond to results obtained in tests carried 

out under conditions of constant normal stiffness (CNS) and 42% carried out under conditions of constant normal 

loading (CNL). In addition, both filled (55%) and unfilled (45%) rock discontinuities are included.  

The data used to develop the models also includes the results of tests carried out on discontinuities that are not very 

rough to very rough, as well as on soft to very resistant rocks.  Table 1 shows the measures of dispersion and central 

tendency for the values of the input and output variables in the data set used to develop the proposed neural models.  

 

Table 1 – Descriptive statistics of the variables in the database. 

Parameters Minimum Maximum Mean Median Standard Deviation 

kn (Kpa/mm) 0.00 7515.00 266.06 90.96 601.99 

t/a 0.00 2.00 0.51 0.00 0.68 

σn0 (MPa) 0.05 46.50 2.02 0.56 5.77 

JRC 2.00 20.00 9.19 8.00 4.75 

σc (MPa) 3.50 150.00 21.05 12.00 30.66 

ϕb (Graus) 30.00 37.50 33.99 35.00 3.44 

ϕfill (Graus) 0.00 35.50 14.62 0.00 15.98 

δh (mm) 0.01 26.00 8.03 7.00 5.81 

τs (MPa) 0.01 6.68 0.86 0.61 0.84 

δv (mm) -2.43 4.97 0.39 0.20 0.83 

Source: Authors (2024). 

 
3.3. Training and testing RBF models  

According to Souza, Batista and Silva (2021), network training  consists of changing synaptic weights and thresholds 

according to a specific learn ing algorithm. In  this art icle, the construction of RBF network models was carried  out using 

the newrb function1 developed by Hagan, Demuth and Beale (1996) and available in Matlab's Neural Network Toolbox.  

Mota et al. (2011) point out that in the test phase, input patterns not used in training are used and it is at this stage that 

the performance achieved by the RBF network is effectively  evaluated by means of performance indices compatible with 

the task of interest. In  regression, it is common to use the correlation between the actual output values and the values 

predicted by the model. The coefficient of determination, usually denoted R2, is also widely used to assess how well the 

regression model fits the data. Once trained and tested, the neural network allows the models to be validated with field 

data, which  in  this study was done by evaluating the ability of the models developed to represent the behavior of the 

modeled parameters, according to the studies by Dantas Neto et al. (2017), Leite et al. (2019a), Leite et al. (2019b) and 

Dantas Neto et al. (2022). To build the regression models based on the RBF network, a source code was developed in the 

Matlab script language (version 13a), the flowchart of which is illustrated in Figure 2. 

Initially, the input and output patterns are loaded and read. Such data must be arranged in lines and in a single file 

with the .dat extension. Possetti (2009) points out that, for example, normalization techniques can be implemented to the 

data set to be modeled using RBF, to make the training process more efficient. In this way, the data used in the training 

and testing phases were normalized between 0 and 1. The next  stage consists of randomly  selecting the samples to be 

used in the train ing and testing phases. In this work, 80% of the available experimental data was used for the training 

phase and 20% for the test phase, obtained randomly from the available data set, as suggested by Turcato (2015).  

Next, the adjustment parameters required by the algorithm are defined, namely the width of the radial basis function 

(𝜎) and the largest mean squared error (MSE) allowed in the train ing stage. In the newrb function, this parameter is 

denoted by the term goal. In this work, we made 𝜎 = 0.5 and tested 10 values for the goal parameter, vary ing it  from 

                                                                 
1 https://www.mathworks.com/help/deeplearning/ref/newrb.html 
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0.0001 to 0.001, so that we could satisfactorily assess the influence of the MSE value on the generalization capacity of 

the models (DIAS, 2005).  

The centers of the radial basis functions are defined using clustering techniques so that the Euclidean distance 

between each center and the input vectors in the training set is as small as possible.  The centers of the radial basis 

functions represent the synaptic weights between the input layer and the intermedia te layer of the RBF network. Once 

obtained, their values are used to calculate the radial basis functions that represent the neurons of the intermediate layer 

according to Equation 1 presented above. The output of the RBF network is calcu lated as the linea r combination of the 

activations of the hidden neurons weighted by the synaptic weights linking them to the output neuron.  

According to the newrb function, developed by Hagan, Demuth and Beale (1996), the outputs corresponding to the 

training samples have their values compared to the observed values to generate the mean squared error for that training 

epoch. After calculat ion, the input vector for which this mean squared error was the maximum among those calculated is 

identified, and if th is value is higher than the value set for the target MSE in the training process, a new h idden neuron is 

added, and the radial functions of the hidden layer are adjusted again. Th is process takes place iterat ively and t rain ing is 

terminated when the maximum MSE value allowed in training, called  the goal, is reached or the maximum number o f 

neurons is reached (i.e. the total number of examples in the training set). 

After the iterations made during the training process, the statistical performance in the train ing and testing phases is 

calculated in the source code, considering 50 d ifferent simulations in which randomly chosen input -output data is used. 

The performance of the RBF network is evaluated by the mean, standard deviation, maximum and minimum values and 

the median of the coefficients of determination (R2). 

The last stage of the modeling process consists of storing the topology of the RBF network with the best performance, 

considering the highest geometric mean of the coefficients of determination of the 2 output variab les of interest using test 

samples. The stored network allows the models to be validated, so it is necessary to insert a .dat file  containing data that 

was not used in the previous stages. 
 

 
Figure 2 – Illustration of the RBF network training and testing processes. 

Source: Authors (2024). 
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3.4 Regression model validation and selection stage 

Once all the models had been developed, an  analysis was carried  out to select as suitable models fo r validation those 

with coefficients of determination (R2) greater than 0.95 and root mean square errors (RMSE) closer to zero in the 

training and testing phases. Lower RMSE values suggest a better fitting model, as they indicate a smaller error between 

the actual data and that estimated by the RBF, which in statistical terms indicates a good fitting model. 

Validation consists of evaluating the models in  terms of their ability to satisfactorily represent the influence of the 

input variables on the predicted values for shear stress and dilation in hypothetical rock discontinuities, in a similar way 

to what was done in the works by Dantas Neto et al. (2017), Leite et al. (2019a), Leite et al. (2019b), and Dantas Neto et 

al. (2022). The model for predicting the shear behavior of rock d iscontinuities was then selected using the  best 

performance in the validation phase as the final criterion. 

 

4. Results and discussion 

Table 2 shows the values of the coefficients of determination (R2) and the RMSE obtained during the train ing and 

testing phases of the RBF models proposed for predicting the shear behavior of rock discontinuities represented by shear 

stress and dilation. 

 

Table 2 – Coefficients of determination and RMSE of the training and test sets for shear stress and dilat ion. 

Configurations Shear stress Dilation 

 

Models 

 

Goal 

 

Archictecture 

Training Test Training Test 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

M1 0.0002 8-242-2 0.9840 0.0153 0.9872 0.0157 0.9872 0.0127 0.9840 0.0141 

M2 0.0003 8-129-2 0.9760 0.0189 0.9828 0.0185 0.9798 0.0184 0.9800 0.0178 

M3 0.0004 8-103-2 0.9686 0.0217 0.9787 0.0205 0.9719 0.0182 0.9742 0.0203 
M4 0.0005 8-87-2 0.9632 0.0235 0.9748 0.0223 0.9624 0.0210 0.9669 0.0230 

M5 0.0006 8-76-2 0.9593 0.0247 0.9709 0.0240 0.9528 0.0235 0.9638 0.0241 

M6 0.0007 8-72-2 0.9566 0.0255 0.9687 0.0248 0.9374 0.0271 0.9507 0.0280 

M7 0.0008 8-64-2 0.9552 0.0266 0.9643 0.0244 0.9285 0.0297 0.9347 0.0301 

M8 0.0009 8-51-2 0.9419 0.0295 0.9579 0.0288 0.9214 0.0304 0.9399 0.0311 

M9 0.0001 8-49-2 0.9388 0.0313 0.9480 0.0286 0.9193 0.0320 0.9280 0.0299 

Source: Authors (2024). 

 

The results show that considering a very low goal leads to overfitting, which is when a statistical model fits the 

training data set very well but proves ineffective at pred icting the output values for test samples. Therefore, the model 

built with a goal of 0.0001 was discarded. In  accordance with the established criteria, models M1, M2, M3, M4, and M5, 

with R2 greater than 0.95 and RMSE close to 0 in the training and testing phases, were chosen as suitable for the 

validation process. To this end, hypothetical discontinuities were used to ascertain whether they could express the 

influence of the variables that govern the shear behavior of filled and unfilled  rock discontinuities, under CNL and CNS 

conditions. These discontinuities have as constant variables  𝜎𝑐  = 12 MPa, JRC = 5, 𝜙𝑏 = 37.5º, and to verify the 

influence of the fill we used 𝜎𝑓𝑖𝑙𝑙  = 35.5° and different values of 𝑡 𝑎⁄  ∈ {0, 0.6, 1.0, 1.4}. 

The results obtained in the validation phase indicate that the M1 model best represented the influence of the input 

variables on the shear behavior of the rock d iscontinuities. The results provided by the RBF were coherent, and as 

expected, there was an increase in shear stress (Figures 3a and 4a) as well as a decrease in dilation (Figures 3b and 4b) 

with the increase in contour normal stiffness and initial normal stress, respectively.  

It can also be seen that for h igh levels of initial normal stress, there is a marked decrease in dilation (Figure 4b). This 

is due to the degradation of the asperities of the unfilled  discontinuity, as shown in the experimental results presented by 

Indraratna and Haque (2000), Indraratna, Oliveira and Brown (2010), Oliveira, Indraratna and Nemcick (2009) and 

Oliveira and Indraratna (2010), indicating the model's ability to understand this phenomenon. 
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To evaluate the behavior of the model with the change in roughness, JRC values of 5 and 10 were assumed for 

hypothetical discontinuity without filling, under CNS (560 kPa/mm). Figures 5a and 5b show the increase in both shear 

stress and dilation with roughness represented by the JRC value, as expected. 

 

 

.  

Figure 3 – Influence of normal stiffness on shear stress (a) and dilation (b) (𝜎no= 0,5 MPa, t/a =0). 

Source: Authors (2024). 
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Figure 4 – Influence of initial normal stress on shear stress (a) and dilation (b) (kn = 0 kPa/mm and t/a = 0). 

Source: Authors (2024). 
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Figure 5 – Influence of roughness on shear stress (a) and dilation (b) (kn = 560 kPa/mm, 𝜎no= 0,5 MPa and t/a=0) 

Source: Authors (2024). 
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Figure 6 – Influence of filling under CNS on shear stress (a) and dilation (b) (kn= 560 kPa/mm and 𝜎no= 0,5 MPa) 

Source: Authors (2024). 
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Figure 7 – Architecture of the best performing RBF model (8-242-2). 

Source: Authors (2024). 

 

  
Figure 8 – Correlation between experimental data and those predicted by the RBF network for shear stress for the 

training and test sets. 

Source: Authors (2024). 

 
Figure 9 presents the comparison between the results provided by the RBF model, the experimental data and the 
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the shear stress (a) and dilation (b ) for an  unfilled rock d iscontinuity tested under conditions of constant normal stiffness 

with kn=453 kPa/mm, 𝜎𝑐= 12 MPa, JRC=8 and 𝜙𝑏 = 37,5° .  

The results show that for both output variables, the M1 model fits better to the experimental data than the other 

models considered, showing that neural networks of the rad ial basis function type have provided better results than those 

obtained by traditional analytical models and by multilayer perceptrons.  
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Figure 9 – Comparison between experimental data and neural and analytical models for shear stress (a) and dilation 

(b). 

Source:  Authors (2024). 

 

5. Conclusions 

In this work, an alternative approach was proposed for estimat ing the shear behavior of filled and unfilled rock 

discontinuities under CNL and CNS conditions. The model called M1 was obtained with a spread equal to 0.5 and a goal 

of 0.0002, having as input variables the normal stiffness (kn) given in kPa/mm, in itial normal stress (σn0) in MPa, the 

coefficient of jo int roughness (JRC), the resistance to uniaxial compression of the intact rock (σc) in MPa, the basic 

friction angle ( b) in degrees and shear displacement (δh) in mm, while the predictor variab les refer to resistance to shear 

(τs) given in kPa and the corresponding dilation (δv) in mm, presenting an architecture of 8-242-2. 

The coefficients of determination were greater than 0.98 for shear stress and dilation and the RMSE values were 

equal to or less than 0.0157 in the training and testing phases, indicating excellent agreement between the experimental 

data and the results obtained by the proposed RBF model. Considering the various characteristics of hypothetical filled 

and unfilled rock discontinuities, the model chosen can satisfactorily represent the influence of the variables that govern 

0

1

2

3

4

0 2 4 6 8 10 12 14 16 18 20 22

S
h

e
a
r 

S
tr

e
s
s
 (
M

P
a
)

a) Horizontal Displacement (mm)

Experimental Data

Indraratna and Haque (2000)

Dantas Neto et al. (2017)

RBF M1

Leite et al. (2019)

sno = 2.43 MPa

sno = 0.56 MPa

sno = 0.16 MPa

-0,5

0

0,5

1

1,5

2

2,5

3

3,5

0 2 4 6 8 10 12 14 16 18 20 22

D
il
a
ti

o
n

 (
m

m
)

b) Horizontal Displacement (mm)

Experimental Data 

Indraratna and Haque (2000)

Dantas Neto et al. (2017)

RBF M1

Leite et al. (2019)

sno = 2.43 MPa

sno = 0.56 MPa

sno = 0.16 MPa



Souza W. M; Neto, S. A. D; Barreto, G. A., Northeast Geosciences Journal, Caicó, v.10, n.2, (JuL-Dez) p.78-95, 2024.                     91                     

_________________________________________________________________________________________________ 

 

their shear behavior and some specific mechanisms, such as the degradation of roughness at high levels of initial normal 

stress. 

The limitations of the proposed model include the need to implement a source code to test and validate the results, 

given that the software interface only allows the data to be trained. In addition, the proposed model did not consider 

other important factors that are currently being investigated, such as some characteristics of the fill material, such as its  

degree of compaction, degree of saturation and the cohesive portion of its shear strength, as well as the effect of 

weathering on the walls of rock d iscontinuities. In short, the proposed model is an alternative method for acquiring shear 

stress and dilation quickly and economically for everyday applications in the field of rock mechanics.   
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