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Abstract: The evolution of geospatial data sources and their diverse classification systems poses challenges to data integration and interoperability. This research addresses
these challenges by introducing an Al-driven methodology that utilises Natural Language Processing (NLP) to measure semantic similarity between land use, vegetation
classification systems, and the national topographic database. Leveraging NLP techniques, such as those in ChatGPT-4.0, this approach automates the semantic alignment
process, reducing manual work. The study aimed to align the Brazilian ET-EDGV topographic mapping with broader national (IBGE Vegetation and Land Use Manuals) and
international (Dynamic World, Global Forest Resources Assessments (FRA)) classification systems. By applying semantic similarity coefficients, the research sought to create
a harmonized framework for integrating geospatial data. The methodology combined Al-based semantic similarity measures, ensuring consistent data alignment. Results
showed strong alignments for classes like “Cultivated Vegetation” and “Crops” and identified challenges for unique Brazilian ecosystems such as “Campinarana”. The
“Mangrove” class highlighted the need for context-specific definitions. The study concludes that NLP can contribute to automated semantic alignment, enhancing geospatial
data integration and interoperability. Although focused on Brazilian data, this methodology is adaptable globally, supporting more accurate landscape representation and
informed decision-making. Future research should integrate advanced AI models and broader ecosystems to refine the process.
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Resumo: A evolugdo das fontes de dados geoespaciais e seus variados sistemas de classificagdo apresentam desafios de integragdo e interoperabilidade de dados. Esta pesquisa
aborda esses desafios introduzindo uma metodologia orientada por IA usando Processamento de Linguagem Natural (PLN) para medir a similaridade semantica entre o uso
da terra, sistemas de classificagdo de vegetagao e bancos de dados topograficos nacionais. Aproveitando técnicas de PNL, como as do ChatGPT-4.0, esta abordagem automatiza
o processo de alinhamento semantico, reduzindo o trabalho manual. O estudo teve como objetivo alinhar o mapeamento topografico brasileiro ET-EDGV com sistemas de
classificag@o nacionais mais amplos (Manuais de Vegetagdo e Uso da Terra do IBGE) e internacionais (Dynamic World, Global Forest Resources Assessments (FRA)). Ao
aplicar coeficientes de similaridade semantica (valores S), a pesquisa buscou criar uma estrutura harmonizada para integrar dados geoespaciais. A metodologia combinou
medidas de similaridade semantica baseadas em IA, garantindo alinhamento consistente de dados. Os resultados mostraram fortes alinhamentos para classes como "Vegetagdo
Cultivada" e "Culturas" e identificaram desafios para ecossistemas brasileiros inicos, como "Campinarana". A classe “Mangrove” destacou a necessidade de definigdes
especificas de contexto. O estudo conclui que o NLP pode contribuir para o alinhamento seméantico automatizado, aprimorando a integragdo e a interoperabilidade de dados
geoespaciais. Embora focada em dados brasileiros, essa metodologia é adaptavel globalmente, apoiando melhor representagéo da paisagem e tomada de decisdo. Pesquisas
futuras devem integrar modelos avangados de IA e ecossistemas mais amplos para refinar o processo.
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1. Introduction

Describing the landscape is a fundamental function of mapping, with topographic mapping specifically addressing the
representation of the landscape. Fremlin and Robinson (1998) state that topographic mapping represents the Earth as a
composite entity, where the landscape reflects its appearance. However, major landscape elements, such as vegetation,
have consistently posed challenges due to the tendency for rapid obsolescence (Gersmehl, 1981; Langran, 1985). The
advent of remote sensing technologies early on demonstrated their value for landscape mapping (Doyle, 1973). Initially,
LULC classification adhered to two significant principles: scale-based hierarchization and semantic compatibility with
other authoritative data sources (Andeson et al., 1976).

Over time, many semantic definitions have emerged from various national systematic mapping initiatives and
numerous land use and land cover (LULC) monitoring projects. Today’s landscape demands data integration from multiple
sources, making semantic compatibility essential for achieving full interoperability. Integrating semantics into mapping—
whether for LULC or topographic purposes—requires careful alignment with the classifications employed by various
regulations. Integrating heterogeneous sources requires semantic compatibility, especially for vague concepts like "forest"
(Bennett, 2001, 2001; Mallenby, 2008; Varzi, 2001).

Integrating and reusing data from many sources, scales, and uses depends on data interoperability. Ballatore et al.
(2013) and Robinson et al. (2017) emphasize that cartographic items' clarity, dependability, and applicability can be
negatively impacted if models lack conceptual alignment. Digital, interactive, and user-oriented contexts especially
aggravate this problem. Another problem is the rare updates to Brazilian topographic maps; many still rely on data from
the 1990s. This contradicts the quick regional changes in biomes like the Amazon, Cerrado, and Caatinga (Souza, 2020),
and emphasizes the need for integrated, flexible responses. Research reveals that geospatial data integration calls for
structural and geometric compatibility. More importantly, it also calls for conceptual coherence between data models
(Kuhn, 2003; Yu et al., 2018; Machado and Camboim, 2024). This is particularly crucial when dealing with complex
thematic categories, such as vegetation, terrain, or land cover.

In Brazil, there is a clear lack of methodologies for automated data integration between institutions, such as the
Brazilian Army Geographical Service Department (DSG) and Brazilian Institute of Geography and Statistics (IBGE),
which map similar or equivalent concepts. As Souza et al. (2025) highlight, improvements in textual analysis, natural
language processing (NLP), and artificial intelligence technologies could help address some issues with semantic
alignment between various conceptual frameworks. The definitions of these categories have long differed across
institutions, regions, and technical disciplines (Bravo, 2014; Brown et al., 2022). With subjective decisions about concepts,
this alignment is now a manual, time-consuming process. Currently, there are no specialized tools to measure or quantify
the equivalence between entities mapped in different models.

Quantifying equivalence, expressed as semantic similarity, between entities mapped to different data models is
expected to allow for class alignment based on their values. Thus, similar semantic definitions should have metrics that
indicate a high degree of equivalence between two entities. Similarly, it will be possible to analyze overall metrics across
models, quantifying equivalence between them and highlighting the least and most equivalent entities based on individual
analysis, which can indicate which data characteristics can foster interoperability when adapted. Furthermore, it indicates
a path to automating this alignment process.

This not only addresses the gap in national topographic map coverage by suggesting the use of data from more frequent
mappings and with metric similarity, but also opens up the possibility of improving the current model, using similar or
different metric indicators between entities. This opens the possibility of deepening interoperability between institutions,
where, in a beneficial scenario, these national institutions would have a greater degree of interoperability in their
productions, fostering evidence-based public policies.

In this context, Natural Language Processing (NLP) emerges as a critical tool to formalize geosemantics Kuhn (2005),
allowing for the comparison of definitions and improving interoperability, which is critical for integrating varied geospatial
datasets (Elavarasi et al., 2014; Martinez-Gil, 2022; Meng et al., 2013; Yuhua Li et al., 2003). As new data sources become
available, NLP techniques offer a powerful approach for processing, understanding, and reconciling the extensive text-
based components of geospatial information. This study utilises NLP and Al to align the Brazilian topographic database
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(ET-EDGV) with national and international classifications, thereby combining more frequently updated data and
enhancing the interoperability and quality of geospatial information.

The primary objective is to achieve semantic alignment through similarity between the Brazilian topographic database
and national and international databases, with the potential to automate the operation. The methodology is illustrated by a
Brazilian case study, whose topographic data model is characterized by high positional accuracy but is not sufficiently
updated (Silva & Camboim, 2020). In contrast, other LULC databases, updated more frequently using satellite imagery,
provide more current data. Integrating these datasets at a semantic level would provide significant benefits for conservation
and decision-making by combining the strengths of both data types.

The results suggest the possibility of semantically aligning different data models, metricizing operations by similarity,
and enabling future process automation. Therefore, in addition to the alignments, it was possible to analyze the class
groupings and their differences, indicating the possibility of adapting the data to promote interoperability.

This research advances data integration practices and enhances the quality of geographic information. Although focused
on Brazilian geospatial data, the proposed methodology has broad applicability. It provides a robust framework for
measuring semantic similarity, which can inform the integration of diverse geospatial data sources globally, thereby
fostering data interoperability and enhancing the overall quality of geospatial information.

2. Methodology
2.1 Selection and Application of Semantic Similarity Methods

To measure semantic similarity in geospatial data, methods have been developed: knowledge-based methods, corpus-
based methods, deep neural network-based methods, and hybrid methods (Gorman & Curran, 2006; Rada et al., 1989;
Sanchez et al., 2012; Wang et al., 2017; Zhu & Iglesias, 2017). Among these, corpus-based methods were selected for their
ability to leverage large volumes of text and capture contextual relationships between geospatial terms, based on the
distributional hypothesis (Ali et al., 2018; Chandrasekaran & Mago, 2022; Martinez-Gil, 2022; Sitikhu et al., 2019;
Gorman & Curran, 2006). Using this hypothesis, corpus-based methods construct vector representations that effectively
capture semantic relationships within geospatial terminology.

Word embeddings have gained prominence among the available corpus-based techniques. Various methods such as
neural networks and word co-occurrence matrices have been used to generate these embeddings, with popular models
including word2vec, GloVe, fastText and BERT (Bojanowski et al., 2017; Devlin et al., 2019; Levy & Goldberg, 2014;
Mikolov et al., 2013; Pennington et al., 2014; Schnabel et al., 2015). Evaluating the effectiveness of these models (Dharma
et al., 2022), we selected the Generative Pre-trained Transformer (GPT) model, the latest advancement in NLP, which is
known for its ability to capture complex semantic nuances in large datasets. This choice reflects the effectiveness and
robustness of the Transformer architecture (Vaswani et al., 2023), which handles semantic relationships in the geospatial
domain.

Once the word vectors are generated, the next critical step is accurately measuring their distance. Among various
similarity measures, cosine similarity is the most effective for complex geospatial concepts (Ali et al., 2018;
Chandrasekaran & Mago, 2022; Machado-Garcia et al., 2014; Sitikhu et al., 2019). It is widely used in NLP due to its
ability to compare vectors of different lengths and capture directional relationships, making it ideal for evaluating semantic
similarities in geospatial data.

Cosine similarity calculates the cosine of the angle between two vectors, with values ranging from -1 (opposite vectors)
to 1 (identical vectors). This measure involves normalizing vectors and calculating their dot product, providing a reliable
indication of textual relationships in vector space (Manning et al., 2009; Wilson & Schakel, 2015). This equation was
originally used in an information retrieval context and is now adapted for comparing semantic definitions

Equation 1 shows the formula for cosine similarity:
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Equation 1 — Cosine similarity equation.
Source: Manning et al. (2009).
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Euclidean lengths. This normalization ensures that cosine similarity focuses on the direction of the vectors, disregarding

their absolute magnitude, thus making it particularly effective for comparing definitions from different geospatial data
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sources. Figure 1 illustrates the components used to determine the similarity between V(d1) and V(d2), where
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Figure 1 - Cosine similarity components illustrated between d; and d.. sim(dl, d2) = cos 6.
Source: Adapted from MANNING et al., 2009.

To apply this method, a query is treated as a "word box", and cosine similarity is used to measure the score of a
definition against that query. This approach allows the selection of top-scoring matches based on their similarity (Manning
et al., 2009). Equation 2 shows how the score of cosine similarity for a given query and document is computed:

— =
Vig) V()

Score (g, d) = Ere—
V(@ V)

Equation 2 — Score of the cosine similarity equation.
Source: MANNING et al. (2009).

The selection of corpus-based semantic similarity methods, specifically employing GPT-generated embeddings and
cosine similarity, has been examined and validated as an appropriate approach for measuring semantic similarity in
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geospatial data. This combination provides a robust solution that can effectively handle the complexities inherent in
geospatial terminology, thereby significantly enhancing data interoperability and the overall quality of geographic
information.

2.2 Case Study Definition and Data Collections

In this case study, the methodology was applied to enhance the national topographic database at a 1:25,000 scale, which
serves general-purpose mapping needs differently than thematic maps designed for specific uses (Anderson et al., 1976;
Doyle, 1973; Fremlin & Robinson, 1998). Consequently, this section justifies the selection of classes from other models,
which are used as inputs for the method, by prioritizing the legend of the topographic mapping. Additionally, a proposal
for harmonizing concept definitions from various sources is presented, aiming to establish more accurate semantic
definitions for LULC in the topographic map classes and to reduce ambiguity and vagueness of these geographical
concepts.

This methodology was developed to semantically align the definitions of the LULC classification with those of the
Brazilian topographic mapping. The process involves three main steps: selecting compatible data sources, collecting
semantic data, and conducting data processing and alignment. Each step is detailed in the methodological flowchart in
Figure 2, which outlines the computational routine and input data used.

Compatibl
patinie Data

Processing and

Semantic data

— collection
™~
\.

-

/7 Select Data

Visualization of
the res

Figure 2 — Methodological Flowchart.

The first step was to identify and select data sources that were representative of the same mapping scale, contained
semantic definitions of data classes, and fell within the scope of land use and cover. The chosen scale was 1:25,000, the
smallest scale of national systematic mapping, allowing for generalization to the larger scales stipulated in the legislation
(DSG, 2017).

To ensure the use of widely adopted standards, Brazil's national mapping agencies (DSG and IBGE) were the main
sources of the national definitions for this study. These sources include the topographic mapping conceptual model ET-
EDGV 3.0, homologated by the National Commission on Cartography (CONCAR), as well as the thematic models
presented in the Land Use and Land Cover Manual and the Brazilian Vegetation Manual, both from IBGE. To complement
these with global data sources, the Food and Agriculture Organisation's (FAO) Forest Resources Assessment and Dynamic
World were also included (Brown et al., 2022; DSG, 2017; FRA, 2015; IBGE, 2012, 2013).
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Some considerations should be made regarding the classes selected from the IBGE manuals to generate an input file
for the main code. In the land use and land cover manual, the classes referring to anthropised areas, as this is not the
purpose of the maps, were not considered in the input file, since this specific class, in topographic mapping, has a major
complexity in terms of modelling and conceptualization of data, so a specific approach is suggested for these classes. The
data classes related to water, and its uses were not considered for the same reason.

Classes related to vegetation transition systems were not considered, as a specific approach with the "Vegetacao de
contato" class on the topographic map is recommended. All remaining data class definitions were organized in a structured
table, accessible via a link'. This table contains definitions for all classes and subclasses in the respective models. This
table serves as our 'word box' and provides the basis for subsequent queries. This structured dataset ensures consistency
and provides a centralized resource for comparing and aligning geospatial data classes across different sources.

2.3 Data Processing and Alignment

We utilised Python, a versatile and widely used programming language, to efficiently process and align data definitions.
Python's well-established ecosystem facilitated seamless integration with OpenAl libraries, supporting a collaborative and
reproducible research environment. The implementation was carried out using a Google Collaboratory Notebook, chosen
for its accessibility and ability to host all the necessary natural language processing (NLP) tools employed in this study.
The full code, divided into two primary sections (semantic search and similarity comparison), is publicly available at link?,
This repository includes comprehensive author notes and a streamlined version containing only the source code for
simplified replication.

2.3.1 Semantic Search Phase

The first component of the methodology focuses on semantic search, which is crucial for identifying definitions with
the highest semantic similarity to a given search term. The process is detailed in the pseudocode below:

Algorithm Semantic_Search Pseudocode

INPUT: OpenAl API key, "words PT1 frmt.csv"
OUTPUT: Ranked list of definitions based on semantic similarity

IMPORT necessary NLP libraries
PROVIDE OpenAl_API key to authenticate access

LOAD "word box_01.csv" containing definitions of land cover and land use classes
COMPUTE embeddings for all definitions in "word_box_01.csv"

PROMPT user to INPUT a search term (e.g., "forest")
COMPUTE embedding for the search term

FOR each definition in "word _box_01.csv"
CALCULATE semantic similarity between search term embedding and definition embedding
END FOR

SORT definitions by descending order of similarity scores
DISPLAY the ranked list of definitions
END Algorithm

! https://anonymous.4open.science/r/word_box-4177.
2 https://anonymous.4open.science/r/MainCode-C56E.
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This phase begins with importing the necessary NLP libraries and authenticating the application with an OpenAl
API key. The data file, “word box 01.csv,” containing various land cover and land use class definitions, is then loaded
and transformed into embedding vectors. A search term, such as “forest,” is prompted from the user, and its embedding is
computed. The similarity between the search term’s embedding and each class definition’s embedding is calculated, sorted,
and displayed in descending order of similarity. This systematic approach identifies and ranks the most relevant definitions,
facilitating semantic alignment across the dataset.

2.3.2 Similarity Between Class Definitions

The second phase of the methodology focuses on comparing the semantic similarity between all class definitions. This
process is detailed in the following pseudocode:

Algorithm Similarity Between_ Classes Pseudo Code

INPUT: "word_box Ol.csv"

OUTPUT: Similarity matrix and visual representations (heatmap and graphs)
IMPORT necessary NLP and visualization libraries

DEFINE transformation model for generating word embeddings

LOAD data class definitions from "words.csv"
COMPUTE embeddings for all class definitions

INITIALIZE a zero matrix "sim" with dimensions (N x N), where N is the number of definitions

FOR each pair of definitions (i, j) in the dataset
CALCULATE cosine similarity between embedding of definition i and definition j
STORE similarity value in "sim" matrix at position (i, j)

END FOR

DISPLAY "sim" matrix as a heatmap for visual inspection
GENERATE relational graphs based on similarity values
END Algorithm

This phase generates a similarity matrix that maps the relationships between class definitions. Each entry in the matrix
represents the cosine similarity score between pairs of class definitions, providing insights into the semantic alignment
within the dataset. The output matrix is then visualized as a heatmap to enhance the interpretability of the semantic
relationships. These visual tools facilitate a deeper analysis of how data classes relate semantically across different sources.
These methodological steps outline a clear and reproducible framework for aligning geospatial data classes using advanced
NLP and Al tools, allowing semantic interoperability in geospatial applications.

3. Results
The results of this study demonstrate the successful semantic alignment of definitions between Brazilian topographic

mapping and other sources and the extraction of similarity metrics between mapped concepts. This section is divided into
subsections to present the results and their implications.
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3.1 Alignment of Definitions and Similarity Metrics

The output of the alignment process is a comprehensive table that can be accessed and downloaded via a provided
link?. In a grey background, this table lists the class names from Brazilian topographic maps and their attributes in the first
column, followed by their corresponding ET-EDGV definitions in the second column. The third to sixth columns include
analogous definitions from other sources, chosen based on the highest similarity scores computed between the topographic
map and definitions from each source.

This tabular layout visually represents semantic alignment between the topographic mapping definitions and those from
other sources. Additionally, the last column includes a harmonized definition generated by ChatGPT-4.0. This approach
highlights the potential of artificial intelligence to refine and enhance the clarity and completeness of geographic concept
definitions. Table 1 exemplifies how definitions from different sources have been aligned, emphasizing the potential for

automation and machine-readable processing in Al-based applications.

Table 1- Alignment Table of Data Classes with the highest scores between data definitions.

FRA - FAO | IBGE-Manual Uso e IBGE-Manual . CHAT GPT
115)1]::FEI]1)\I?1‘"113)121 DEFINITIO Cobertura- Vegetagiio D%‘E‘;;;I‘;'I‘gig ~ | HARMONIZATIO
N DEFINITION DEFINITION N
AE
. Toda a terra | Entendem-se como s,tepe £
Campo ¢ uma .. . Gramineo- Areas abertas
. que ndo seja | areas campestres as N
forma particular . . . Lenhosa ¢ o tipo cobertas por : .
A classificada | diferentes categorias . . Campo ¢ uma area
de ocorréncia = mais gramineas ~
como de vegetagdo . N de terra que ndo é
(normalmente . . representativo homogéneas com .
Grassland | circunstancial) floresta ou fisionomicamente dos campos do pouca ou classificada como
/ Crass an de uma outra terra bem diversa da sul do nenhuma floresta ou outra
ampo ~ arborizada. florestal.../ . ~ terra arborizada.../
vegetagdo .../ Brasil.../ The vegetagdo alta.../ .
: /All land Grassland areas are Grassland is an
Grassland is a . Grassy-Woody Open areas .
. that is not understood as the . area of land that is
particular form . . i Steppe is the covered by .
classified as | different categories not classified as
of occurrence . most homogeneous
forest or | of vegetation that are . 11 forest or other
(usually . . representative grasses with little
. . other physiognomically wooded land,
circumstantial) . type of grassland or no tall
. wooded very different from . .
of vegetation ... . in southern vegetation...
land. forest vegetation... .
Brazil...
A bert O termo "Campo
Toda a terra Entende-se como A Estepe reas abertas Graminco-
Vegetacao que ndo seja | areas campestres as Gramineo- cobertas por lenhoso" refere-se
predominanteme | classificada | diferentes categorias | Lenhosa ¢ o tipo gramineas a arcas de terra
nte herbécea, como de vegetacdo mais homogéneas com e ndio sdo
com raros floresta ou fisionomicamente representativo pouca ou €
. huma classificadas como
Clean arbustos e outra terra bem diversa da dos campos do nen florestas ou terras
Grassland auséncia de arborizada./ | florestal.../Grassland | sul do Brasil... vegetagdo alta... arborizadas. /
/ Campo arvores. All land areas are understood /The Grassy- /Open areas The terrﬁ ”
Limpo /Predominantly | that is not as the different Woody Steppe is covered by "Grassland-
herbaceous classified as categories of the most homogepeot_ls Woodland" refers
vegetation, with | forest or vegetation that are representative | grasses with little
. . tall to areas of land
rare shrubs and other physiognomically type of grassland or no
. . tation that are not
no trees. wooded very different from in southern vege .
. . classified as forest
land. forest vegetation... Brazil...
or wooded land.

3 https://anonymous.4open.science/r/Analogous-definitions_output-7362.
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Terrenos Areas abertas "
. O termo "Campo
definidos cobertas por "
. . Parque" refere-se
como Entende-se como As maiores gramineas ~
« , ~ ~ a terrenos que nao
~ Outros areas campestres as extensoes de homogéneas com ~
Vegetacdo com . . sdo
: . terrenos diferentes categorias Estepe Parque pouca ou .
fisionomia Z predominantement
. Florestados de vegetacao foram observadas nenhuma
herbacea e - . . . - e florestados,
. , com mais | fisionomicamente na parte leste do vegetacao alta. ,
arbustiva, com . . agricolas ou
de 0,5 bem diversa da Planalto das Outras areas
arbustos e . L N urbanos, com
. hectares; florestal, ou seja, Araucarias, na homogéneas de ;.
Dirty subarbustos . ~ ~ caracteristicas
com arvores aquelas que se porgdo central do vegetacao .
Grassland | espacados entre . . especificas de
. . com mais | caracterizam por .../ | Planalto .../ The semelhante a ~
/Campo | si.../ Vegetation . . , vegetagdo.../ The
. . de 5 metros | Countryside areas are | largest extensions gramineas.../ i
Sujo with herbaceous term "Campo
de altura understood as the of Steppe Park Open areas "
and shrubby . . . Parque" refers to
. e.../ Land different categories | were observed in covered by .
features, with . land that is not
defined as | of vegetation that are | the eastern part of | homogeneous .
shrubs and . . . L o . predominantly
Other physiognomically the Araucarias grasses with little
subshrubs . . forested,
spaced apart Forested very different from Plateau, in the or no tall acricultural or
p P Land” over | forest vegetation, that | central portion of | vegetation. Other g .
. . urban, with
0.5 is, those that ... the Rio ... homogeneous . .
. . specific vegetation
hectares; areas of grass-like o
. . characteristics.
with trees... vegetation...

3.2 Quantitative Analysis of Semantic Alignment

The degree of similarity was assessed by aligning semantic definitions from different sources with the Brazilian
topographic mapping classes, represented as S = value. The highest similarity scores aligned with analogous classes,
enabling the creation of alignment diagrams that map data model relationships. The data relation cardinalities, such as 1...*
(one correspondence in one model to many in another) and *...1 (many correspondences in one model to 1 in another),
illustrate the level of detail of the aligned data. For example, in the diagram comparing the ET-EDGV and the Brazilian
Vegetation Manual, we observe that the forest classes in the topographic map are represented by a single class. In contrast,
this concept is represented in vegetation mapping by six main classes, as illustrated in the diagram, and 26 more subclasses
from these. All the definitions of the subclasses were inserted in the input file of the main code for all the models' classes.
In this case of the forest cardinality 1...*, the highest score value was considered to represent it in the diagram. Figure 3
illustrates the semantic alignment between Brazilian topographic maps and national and international data sources. Note
that the data class terms have been kept in their original languages.
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IBGE-MUCT- Manual IBGE-MVB -Manual da FRA- Terms and
ET - EDGV 3.0 (1:25000) = e i ET - EDGV 3.0 (1:25000 ‘
de Uso e Cobertura da ( ) Vegetagao brasileira Evpamiciipdd { L Definitions
Terra Dun S=0.67 3 S=0.64 Du/ S=0.54
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Figure 3 — Alignment Diagram between the Brazilian Topographic Map and other sources.

3.3 Correlation Analysis

A correlation matrix was constructed to analyze the semantic relationships between class definitions from different
sources. This matrix represents the semantic similarity scores for all pairs of definitions, with values ranging from 0 (no
similarity) to 1 (identical definitions). The matrix's main diagonal contains the value 1, as each definition is compared to
itself. The matrix reveals how definitions from different sources closely align with the Brazilian topographic mapping
standard (ET-EDGV 3.0). Table 2 shows a subset of these values, providing insights into the semantic alignment across
datasets. Notably, higher similarity scores were observed for more detailed definitions from IBGE sources, while more

generic.
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Table 2 - Aligned data class correlation values (top scored) and nomenclature.

ET-EDGYV 3.0 FRA - FAO IBGE MUCT IBGE MVB Dynamic World
Class Class/SCORE Class/SCORE Class/SCORE Class/SCORE
Grassland/ Other Land/ Outras izl Veg~etat1on/
campo freas/0.56 Vegetacdo Steppe / Estepe/0.6
P : Campestre/0.58
Cultivated
Vegetation/ Other Land/ Outras
Vegetagdo Areas/0.54
Cultivada
Manerove/ Flooded Vegetation/
M. £ Mangrove/ Mangue/0.52 Vegetagdo Submersa/
angue
0.56
Forest/ Forest/ Floresta/ 0.59 Trees/ Arvores/0.48
Floresta
Wetland/ lin Land Wetland / Area Umida Clomiliemin Wz,lt’er Leradi
Jrea Umida Water Bodies/corpos de 0.58 Corpos D’agua
dgua terrestre/ 0.56 Continentais/0.59
Other Land with Tree Cover/ Grassland Shrub & Scrub/
Steppe Savannah b ion/ ~ Steppe Savannah/ Savana Arb M ]
/Caatinga Outras terras com cobertura  Vegetation/Vegetagdo Estépical 0.62 rbusto e Mataga
arboreal 0.55 Campestre/0.58 /0.57
Other Wooded Land/ Outras Sl € e/
Savannah /Cerrado . Arbusto e Matagal /
terras arborizada/ 0.44 0.62
Campinarana Forest / Floresta/0.45 -_ Trees/ Arvores/ 0.57
Reforestation/ Reforestation/ ‘
Reflorestamento Forest / Floresta/0.51 Reflorestamento /0,53 Trees/ Arvores/ 0.5
Marsh or Swamp/
Brejo ou Pdntano
Other Land/ Outra
Rf;;:;(y Outcrtop / Other Land/ Outra Bare Ground/ Terra
oramento Terra/0.57 nual0.56
Rochoso
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3.4 Visualizing Results with Heat Maps

To better visualize these trends, a heat map was created to represent the correlations of each data element with every
other element. This visualization helps to identify similarity between definitions from different sources. The average
similarity between two classes can be calculated by grouping definitions from the same data class. For example, the
similarity between all definitions of "Forest" across different sources was determined, allowing for further discussion on
the usefulness of this coefficient. Figure 4 illustrates the heat map applied to these class definitions. It can be observed that
greater generality definitions present low correlation values between the other definitions, resulting in a lighter tone line,
as in lines 34 and 31. In contrast, high correlations occur through dark points or darker patches.

Figure 4 — Forest Heat Map with the Scores class by class.
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Maps were generated to provide a comparative perspective on aligned classes within the same geographical area.
The maps generated employed the aligned classes for each model, with the objective of achieving a uniform presentation.
The selected region was part of the state of Rio de Janeiro, and all images were represented at an approximate scale of
1:250,000. The legends for the land use and land cover map and the topographic map are presented in a unified manner.
The vegetation map was created in accordance with the regulations delineated in the pertinent technical map manual. The
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legend was derived from the IBGE Environmental Information Bank, which can be accessed via the provided link*. The
Dynamic World map, in combination with its associated legend, was retrieved from the project's official platform. The
FAO vegetation map was excluded due to the lack of comparable data. Nevertheless, the comparative maps and their
respective legends can be accessed via the following link>.

Figure 5 — Perspective of comparative maps on aligned classes in Rio de Janeiro.

et ot

4. Discussion

This study has provided valuable insights into the alignment between different land use and vegetation classification
systems, specifically the IBGE Land Use and Land Cover and Vegetation Handbook, the ET-EDGV Topographic
Mapping, and international standards such as Dynamic World and the Global Forest Resources Assessments (FRA). These

4 https://bdiaweb.ibge.gov.br/#/consulta/vegetacao
5 https://anonymous.4open.science/r/Comparative_Maps-3247/README.md
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insights help elucidate both the potential for integration and the challenges faced with diverse mapping standards. Artificial
intelligence and NLP techniques, such as those implemented in ChatGPT-4.0, also generated harmonized definitions.
These may represent a promising path for improving the clarity and consistency of individual classification systems, though
they do not offer a definitive solution.

Integrating different land cover and land use (LULC) classification systems reveals the complexity of aligning datasets
with varying levels of detail and thematic focus. The ET-EDGV, as a topographic mapping standard, provides a higher
level of detail due to its reliance on aerial photography and field verification. This contrasts with global standards, which
tend to be more generic and can encompass multiple ET-EDGV categories. Notably, the IBGE Brazilian Vegetation
Handbook demonstrates a high degree of detail, often closely aligning with ET-EDGYV classes, sometimes in a near 1:1
correspondence. Integrating detailed topographic mapping data into broader LULC datasets tends to be more semantically
accurate than the reverse, although some information loss is inevitable. For example, the FRA’s focus on forests illustrates
semantic divergence arising from differing objectives and user needs.

A central contribution of this work is the use of artificial intelligence (Al) to quantify and support semantic connections
between classification definitions. Applying similarity values (S-values) allows for the measurement of class alignment,
often mirroring human-level interpretation. These values revealed strong alignments in cases such as “Cultivated
Vegetation” and “Crops,” highlighting the potential for seamless data integration. However, discrepancies emerged, such
as those between "Grassland" in the IBGE LULC, "Reforestation" in the IBGE Vegetation Handbook, and ET-EDGV,
indicating the need for further investigation. Unique regional classes, like “Campinarana” from the Amazon, exhibited low
S-values compared to international classifications, reflecting the challenge of aligning region-specific types with broader,
global categories. Similarly, discrepancies such as the low S-values for “Mangrove” between ET-EDGV and FRA suggest
classification criteria or scope differences.

Another important finding relates to the concept of cardinality in semantic alignment. One-to-one (1:1) class
relationships typically resulted in higher S-values and stronger semantic alignment than one-to-many (1...*) relationships.
This underscores the greater ease of achieving semantic accuracy when classifications map directly rather than requiring
aggregation or disaggregation. These challenges are especially evident when translating detailed national categories, like
ET-EDGV’s “Wetlands,” into more generalized international classes, often requiring simplifications that reduce specificity
and may lead to misalignments.

Despite these challenges, Al-assisted similarity scoring is valuable in identifying optimal alignments and promoting
data interoperability. Future work could explore refining international standards to accommodate better region-specific
ecosystems, such as “Campinarana,” improving the representation of unique biomes. Investigating low S-values in greater
depth can also help to fine-tune Al models for improved semantic matching. Efforts to enhance Al methodologies should
focus on better handling one-to-many relationships and the nuanced characteristics of thematic data. Furthermore, adopting
open-source large language models (LLMs), such as Llama, could reduce dependence on proprietary technologies like
those from OpenAl.

5. Conclusion

Describing the landscape has long been an essential mapping function, especially for topographic representations. This
study confirms that topographic mapping, characterized by high detail and accuracy, can effectively be aligned with
broader LULC and thematic classifications using Al-driven methodologies. By employing NLP techniques and using
semantic similarity as a key measure, this research addressed the challenge of aligning disparate geospatial data sources,
contributing to improved interoperability and more robust integration practices. The methodology outlined demonstrated
that Al can bridge semantic gaps, creating connections between data sources that mirror human-level understanding and
aligning with the principles of geosemantics as described by Kuhn (2005). When used thoughtfully, the study showed that
semantic similarity values could guide data harmonization, reducing manual effort and minimizing human bias while
ensuring consistency and relevance across varied mapping frameworks. The main result is characterized by the alignment
between data classes through semantic similarity between formal definitions. While the focus was on Brazilian geospatial
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data—highlighting unique ecosystems such as “Campinarana”—the methodology has global applicability. It provides a
scalable framework for integrating diverse geospatial datasets. For further investigations, it is recommended to adopt local
factors, such as climatic characteristics, to minimize the specificities of each formation, especially among global models.
Future work should incorporate evolving Al models and expand the method to include additional ecosystems and data
types. Continued advancements in NLP and Al are expected to enhance the semantic precision of data integration, fostering
a deeper understanding of landscape representations and their semantic properties.
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