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Abstract: The evolution of geospatial data sources and their diverse classification systems poses challenges to data integration and interoperability. This research addresses 

these challenges by introducing an AI-driven methodology that utilises Natural Language Processing (NLP) to measure semantic similarity between land use, vegetation 

classification systems, and the national topographic database. Leveraging NLP techniques, such as those in ChatGPT-4.0, this approach automates the semantic alignment 

process, reducing manual work. The study aimed to align the Brazilian ET-EDGV topographic mapping with broader national (IBGE Vegetation and Land Use Manuals) and 

international (Dynamic World, Global Forest Resources Assessments (FRA)) classification systems. By applying semantic similarity coefficients, the research sought to create 

a harmonized framework for integrating geospatial data. The methodology combined AI-based semantic similarity measures, ensuring consistent data alignment. Results 

showed strong alignments for classes like “Cultivated Vegetation” and “Crops” and identified challenges for unique Brazilian ecosystems such as “Campinarana”. The 

“Mangrove” class highlighted the need for context-specific definitions. The study concludes that NLP can contribute to automated semantic alignment, enhancing geospatial 

data integration and interoperability. Although focused on Brazilian data, this methodology is adaptable globally, supporting more accurate landscape representation and 

informed decision-making. Future research should integrate advanced AI models and broader ecosystems to refine the process. 

Keywords: Topographic Map; Natural language processing.; Semantic similarity. 

 

Resumo: A evolução das fontes de dados geoespaciais e seus variados sistemas de classificação apresentam desafios de integração e interoperabilidade de dados. Esta pesquisa 

aborda esses desafios introduzindo uma metodologia orientada por IA usando Processamento de Linguagem Natural (PLN) para medir a similaridade semântica entre o uso 

da terra, sistemas de classificação de vegetação e bancos de dados topográficos nacionais. Aproveitando técnicas de PNL, como as do ChatGPT-4.0, esta abordagem automatiza 

o processo de alinhamento semântico, reduzindo o trabalho manual. O estudo teve como objetivo alinhar o mapeamento topográfico brasileiro ET-EDGV com sistemas de 

classificação nacionais mais amplos (Manuais de Vegetação e Uso da Terra do IBGE) e internacionais (Dynamic World, Global Forest Resources Assessments (FRA)). Ao 

aplicar coeficientes de similaridade semântica (valores S), a pesquisa buscou criar uma estrutura harmonizada para integrar dados geoespaciais. A metodologia combinou 

medidas de similaridade semântica baseadas em IA, garantindo alinhamento consistente de dados. Os resultados mostraram fortes alinhamentos para classes como "Vegetação 

Cultivada" e "Culturas" e identificaram desafios para ecossistemas brasileiros únicos, como "Campinarana". A classe “Mangrove” destacou a necessidade de definições 

específicas de contexto. O estudo conclui que o NLP pode contribuir para o alinhamento semântico automatizado, aprimorando a integração e a interoperabilidade de dados 

geoespaciais. Embora focada em dados brasileiros, essa metodologia é adaptável globalmente, apoiando melhor representação da paisagem e tomada de decisão. Pesquisas 

futuras devem integrar modelos avançados de IA e ecossistemas mais amplos para refinar o processo. 
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1. Introduction 

Describing the landscape is a fundamental function of mapping, with topographic mapping specifically addressing the 

representation of the landscape. Fremlin and Robinson (1998) state that topographic mapping represents the Earth as a 

composite entity, where the landscape reflects its appearance. However, major landscape elements, such as vegetation, 

have consistently posed challenges due to the tendency for rapid obsolescence (Gersmehl, 1981; Langran, 1985). The 

advent of remote sensing technologies early on demonstrated their value for landscape mapping (Doyle, 1973). Initially, 

LULC classification adhered to two significant principles: scale-based hierarchization and semantic compatibility with 

other authoritative data sources  (Andeson et al., 1976). 

Over time, many semantic definitions have emerged from various national systematic mapping initiatives and 

numerous land use and land cover (LULC) monitoring projects. Today’s landscape demands data integration from multiple 

sources, making semantic compatibility essential for achieving full interoperability. Integrating semantics into mapping—

whether for LULC or topographic purposes—requires careful alignment with the classifications employed by various 

regulations. Integrating heterogeneous sources requires semantic compatibility, especially for vague concepts like "forest" 

(Bennett, 2001, 2001; Mallenby, 2008; Varzi, 2001). 

Integrating and reusing data from many sources, scales, and uses depends on data interoperability. Ballatore et al. 

(2013) and Robinson et al. (2017) emphasize that cartographic items' clarity, dependability, and applicability can be 

negatively impacted if models lack conceptual alignment. Digital, interactive, and user-oriented contexts especially 

aggravate this problem. Another problem is the rare updates to Brazilian topographic maps; many still rely on data from 

the 1990s. This contradicts the quick regional changes in biomes like the Amazon, Cerrado, and Caatinga (Souza, 2020), 

and emphasizes the need for integrated, flexible responses. Research reveals that geospatial data integration calls for 

structural and geometric compatibility. More importantly, it also calls for conceptual coherence between data models 

(Kuhn, 2003; Yu et al., 2018; Machado and Camboim, 2024). This is particularly crucial when dealing with complex 

thematic categories, such as vegetation, terrain, or land cover.  

In Brazil, there is a clear lack of methodologies for automated data integration between institutions, such as the 

Brazilian Army Geographical Service Department (DSG) and Brazilian Institute of Geography and Statistics (IBGE), 

which map similar or equivalent concepts. As Souza et al. (2025) highlight, improvements in textual analysis, natural 

language processing (NLP), and artificial intelligence technologies could help address some issues with semantic 

alignment between various conceptual frameworks. The definitions of these categories have long differed across 

institutions, regions, and technical disciplines (Bravo, 2014; Brown et al., 2022). With subjective decisions about concepts, 

this alignment is now a manual, time-consuming process. Currently, there are no specialized tools to measure or quantify 

the equivalence between entities mapped in different models. 

Quantifying equivalence, expressed as semantic similarity, between entities mapped to different data models is 

expected to allow for class alignment based on their values. Thus, similar semantic definitions should have metrics that 

indicate a high degree of equivalence between two entities. Similarly, it will be possible to analyze overall metrics across 

models, quantifying equivalence between them and highlighting the least and most equivalent entities based on individual 

analysis, which can indicate which data characteristics can foster interoperability when adapted. Furthermore, it indicates 

a path to automating this alignment process. 

This not only addresses the gap in national topographic map coverage by suggesting the use of data from more frequent 

mappings and with metric similarity, but also opens up the possibility of improving the current model, using similar or 

different metric indicators between entities. This opens the possibility of deepening interoperability between institutions, 

where, in a beneficial scenario, these national institutions would have a greater degree of interoperability in their 

productions, fostering evidence-based public policies. 

In this context, Natural Language Processing (NLP) emerges as a critical tool to formalize geosemantics Kuhn (2005), 

allowing for the comparison of definitions and improving interoperability, which is critical for integrating varied geospatial 

datasets (Elavarasi et al., 2014; Martinez-Gil, 2022; Meng et al., 2013; Yuhua Li et al., 2003). As new data sources become 

available, NLP techniques offer a powerful approach for processing, understanding, and reconciling the extensive text-

based components of geospatial information. This study utilises NLP and AI to align the Brazilian topographic database 
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(ET-EDGV) with national and international classifications, thereby combining more frequently updated data and 

enhancing the interoperability and quality of geospatial information. 

The primary objective is to achieve semantic alignment through similarity between the Brazilian topographic database 

and national and international databases, with the potential to automate the operation. The methodology is illustrated by a 

Brazilian case study, whose topographic data model is characterized by high positional accuracy but is not sufficiently 

updated (Silva & Camboim, 2020). In contrast, other LULC databases, updated more frequently using satellite imagery, 

provide more current data. Integrating these datasets at a semantic level would provide significant benefits for conservation 

and decision-making by combining the strengths of both data types. 

The results suggest the possibility of semantically aligning different data models, metricizing operations by similarity, 

and enabling future process automation. Therefore, in addition to the alignments, it was possible to analyze the class 

groupings and their differences, indicating the possibility of adapting the data to promote interoperability. 

This research advances data integration practices and enhances the quality of geographic information. Although focused 

on Brazilian geospatial data, the proposed methodology has broad applicability. It provides a robust framework for 

measuring semantic similarity, which can inform the integration of diverse geospatial data sources globally, thereby 

fostering data interoperability and enhancing the overall quality of geospatial information. 

 

2. Methodology 

2.1 Selection and Application of Semantic Similarity Methods 

To measure semantic similarity in geospatial data, methods have been developed: knowledge-based methods, corpus-

based methods, deep neural network-based methods, and hybrid methods (Gorman & Curran, 2006; Rada et al., 1989; 

Sánchez et al., 2012; Wang et al., 2017; Zhu & Iglesias, 2017). Among these, corpus-based methods were selected for their 

ability to leverage large volumes of text and capture contextual relationships between geospatial terms, based on the 

distributional hypothesis (Ali et al., 2018; Chandrasekaran & Mago, 2022; Martinez-Gil, 2022; Sitikhu et al., 2019; 

Gorman & Curran, 2006). Using this hypothesis, corpus-based methods construct vector representations that effectively 

capture semantic relationships within geospatial terminology. 

Word embeddings have gained prominence among the available corpus-based techniques. Various methods such as 

neural networks and word co-occurrence matrices have been used to generate these embeddings, with popular models 

including word2vec, GloVe, fastText and BERT (Bojanowski et al., 2017; Devlin et al., 2019; Levy & Goldberg, 2014; 

Mikolov et al., 2013; Pennington et al., 2014; Schnabel et al., 2015). Evaluating the effectiveness of these models (Dharma 

et al., 2022), we selected the Generative Pre-trained Transformer (GPT) model, the latest advancement in NLP, which is 

known for its ability to capture complex semantic nuances in large datasets. This choice reflects the effectiveness and 

robustness of the Transformer architecture (Vaswani et al., 2023), which handles semantic relationships in the geospatial 

domain. 

Once the word vectors are generated, the next critical step is accurately measuring their distance. Among various 

similarity measures, cosine similarity is the most effective for complex geospatial concepts (Ali et al., 2018; 

Chandrasekaran & Mago, 2022; Machado-García et al., 2014; Sitikhu et al., 2019). It is widely used in NLP due to its 

ability to compare vectors of different lengths and capture directional relationships, making it ideal for evaluating semantic 

similarities in geospatial data. 

Cosine similarity calculates the cosine of the angle between two vectors, with values ranging from  -1 (opposite vectors) 

to 1 (identical vectors). This measure involves normalizing vectors and calculating their dot product, providing a reliable 

indication of textual relationships in vector space (Manning et al., 2009; Wilson & Schakel, 2015). This equation was 

originally used in an information retrieval context and is now adapted for comparing semantic definitions 

Equation 1 shows the formula for cosine similarity: 
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Equation 1 – Cosine similarity equation. 

Source: Manning et al. (2009). 

(d1) and  (d2) represent the vector representations of documents d1 and d2, and  and  are their 

Euclidean lengths. This normalization ensures that cosine similarity focuses on the direction of the vectors, disregarding 

their absolute magnitude, thus making it particularly effective for comparing definitions from different geospatial data 

sources. Figure 1 illustrates the components used to determine the similarity between (d1) and (d2), where 

  represents the query vector, and θ is the angle between them. 

 

 
Figure 1 - Cosine similarity components illustrated between d₁ and d₂. sim(d1, d2) = cos θ. 

Source: Adapted from MANNING et al., 2009. 

 

To apply this method, a query is treated as a "word box", and cosine similarity is used to measure the score of a 

definition against that query. This approach allows the selection of top-scoring matches based on their similarity (Manning 

et al., 2009). Equation 2 shows how the score of cosine similarity for a given query and document is computed: 

 

Equation 2 – Score of the cosine similarity equation. 

Source: MANNING et al. (2009). 

 

The selection of corpus-based semantic similarity methods, specifically employing GPT-generated embeddings and 

cosine similarity, has been examined and validated as an appropriate approach for measuring semantic similarity in 
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geospatial data. This combination provides a robust solution that can effectively handle the complexities inherent in 

geospatial terminology, thereby significantly enhancing data interoperability and the overall quality of geographic 

information. 

2.2 Case Study Definition and Data Collections 

In this case study, the methodology was applied to enhance the national topographic database at a 1:25,000 scale, which 

serves general-purpose mapping needs differently than thematic maps designed for specific uses (Anderson et al., 1976; 

Doyle, 1973; Fremlin & Robinson, 1998). Consequently, this section justifies the selection of classes from other models, 

which are used as inputs for the method, by prioritizing the legend of the topographic mapping. Additionally, a proposal 

for harmonizing concept definitions from various sources is presented, aiming to establish more accurate semantic 

definitions for LULC in the topographic map classes and to reduce ambiguity and vagueness of these geographical 

concepts. 

This methodology was developed to semantically align the definitions of the LULC classification with those of the 

Brazilian topographic mapping. The process involves three main steps: selecting compatible data sources, collecting 

semantic data, and conducting data processing and alignment. Each step is detailed in the methodological flowchart in 

Figure 2, which outlines the computational routine and input data used. 

 

 

Figure 2 – Methodological Flowchart. 

 

The first step was to identify and select data sources that were representative of the same mapping scale, contained 

semantic definitions of data classes, and fell within the scope of land use and cover. The chosen scale was 1:25,000, the 

smallest scale of national systematic mapping, allowing for generalization to the larger scales stipulated in the legislation 

(DSG, 2017). 

To ensure the use of widely adopted standards, Brazil's national mapping agencies (DSG and IBGE) were the main 

sources of the national definitions for this study. These sources include the topographic mapping conceptual model ET-

EDGV 3.0, homologated by the National Commission on Cartography (CONCAR), as well as the thematic models 

presented in the Land Use and Land Cover Manual and the Brazilian Vegetation Manual, both from IBGE. To complement 

these with global data sources, the Food and Agriculture Organisation's (FAO) Forest Resources Assessment and Dynamic 

World were also included (Brown et al., 2022; DSG, 2017; FRA, 2015; IBGE, 2012, 2013). 
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Some considerations should be made regarding the classes selected from the IBGE manuals to generate an input file 

for the main code. In the land use and land cover manual, the classes referring to anthropised areas, as this is not the 

purpose of the maps, were not considered in the input file, since this specific class, in topographic mapping, has a major 

complexity in terms of modelling and conceptualization of data, so a specific approach is suggested for these classes. The 

data classes related to water, and its uses were not considered for the same reason. 

Classes related to vegetation transition systems were not considered, as a specific approach with the "Vegetação de 

contato" class on the topographic map is recommended. All remaining data class definitions were organized in a structured 

table, accessible via a link1. This table contains definitions for all classes and subclasses in the respective models. This 

table serves as our 'word box' and provides the basis for subsequent queries. This structured dataset ensures consistency 

and provides a centralized resource for comparing and aligning geospatial data classes across different sources. 

 

2.3 Data Processing and Alignment   

 
We utilised Python, a versatile and widely used programming language, to efficiently process and align data definitions. 

Python's well-established ecosystem facilitated seamless integration with OpenAI libraries, supporting a collaborative and 

reproducible research environment. The implementation was carried out using a Google Collaboratory Notebook, chosen 

for its accessibility and ability to host all the necessary natural language processing (NLP) tools employed in this study. 

The full code, divided into two primary sections (semantic search and similarity comparison), is publicly available at link2, 

This repository includes comprehensive author notes and a streamlined version containing only the source code for 

simplified replication.    

 

2.3.1 Semantic Search Phase 

 
The first component of the methodology focuses on semantic search, which is crucial for identifying definitions with 

the highest semantic similarity to a given search term. The process is detailed in the pseudocode below: 

Algorithm Semantic_Search Pseudocode 

 

    INPUT: OpenAI_API_key, "words_PT1_frmt.csv" 

    OUTPUT: Ranked list of definitions based on semantic similarity 

 

    IMPORT necessary NLP libraries 

    PROVIDE OpenAI_API_key to authenticate access 

     

    LOAD "word_box_01.csv" containing definitions of land cover and land use classes 

    COMPUTE embeddings for all definitions in "word_box_01.csv" 

     

    PROMPT user to INPUT a search term (e.g., "forest") 

    COMPUTE embedding for the search term 

     

    FOR each definition in "word_box_01.csv" 

        CALCULATE semantic similarity between search term embedding and definition embedding 

    END FOR 

     

    SORT definitions by descending order of similarity scores 

    DISPLAY the ranked list of definitions 

END Algorithm 

 
1 https://anonymous.4open.science/r/word_box-4177. 
2 https://anonymous.4open.science/r/MainCode-C56E. 
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 This phase begins with importing the necessary NLP libraries and authenticating the application with an OpenAI 

API key. The data file, “word_box_01.csv,” containing various land cover and land use class definitions, is then loaded 

and transformed into embedding vectors. A search term, such as “forest,” is prompted from the user, and its embedding is 

computed. The similarity between the search term’s embedding and each class definition’s embedding is calculated, sorted, 

and displayed in descending order of similarity. This systematic approach identifies and ranks the most relevant definitions, 

facilitating semantic alignment across the dataset. 

2.3.2 Similarity Between Class Definitions 

The second phase of the methodology focuses on comparing the semantic similarity between all class definitions. This 

process is detailed in the following pseudocode: 

Algorithm Similarity_Between_Classes Pseudo Code 

 

    INPUT: "word_box_01.csv" 

    OUTPUT: Similarity matrix and visual representations (heatmap and graphs) 

    IMPORT necessary NLP and visualization libraries 

    DEFINE transformation model for generating word embeddings 

     

    LOAD data class definitions from "words.csv" 

    COMPUTE embeddings for all class definitions 

     

    INITIALIZE a zero matrix "sim" with dimensions (N x N), where N is the number of definitions 

     

    FOR each pair of definitions (i, j) in the dataset 

        CALCULATE cosine similarity between embedding of definition_i and definition_j 

        STORE similarity value in "sim" matrix at position (i, j) 

    END FOR 

     

    DISPLAY "sim" matrix as a heatmap for visual inspection 

    GENERATE relational graphs based on similarity values 

END Algorithm 

 

This phase generates a similarity matrix that maps the relationships between class definitions. Each entry in the matrix 

represents the cosine similarity score between pairs of class definitions, providing insights into the semantic alignment 

within the dataset. The output matrix is then visualized as a heatmap to enhance the interpretability of the semantic 

relationships. These visual tools facilitate a deeper analysis of how data classes relate semantically across different sources. 

These methodological steps outline a clear and reproducible framework for aligning geospatial data classes using advanced 

NLP and AI tools, allowing semantic interoperability in geospatial applications. 

3. Results 

The results of this study demonstrate the successful semantic alignment of definitions between Brazilian topographic 

mapping and other sources and the extraction of similarity metrics between mapped concepts. This section is divided into 

subsections to present the results and their implications. 
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3.1 Alignment of Definitions and Similarity Metrics 

 

 The output of the alignment process is a comprehensive table that can be accessed and downloaded via a provided 

link3. In a grey background, this table lists the class names from Brazilian topographic maps and their attributes in the first 

column, followed by their corresponding ET-EDGV definitions in the second column. The third to sixth columns include 

analogous definitions from other sources, chosen based on the highest similarity scores computed between the topographic 

map and definitions from each source. 

 

This tabular layout visually represents semantic alignment between the topographic mapping definitions and those from 

other sources. Additionally, the last column includes a harmonized definition generated by ChatGPT-4.0. This approach 

highlights the potential of artificial intelligence to refine and enhance the clarity and completeness of geographic concept 

definitions. Table 1 exemplifies how definitions from different sources have been aligned, emphasizing the potential for 

automation and machine-readable processing in AI-based applications. 

 

Table 1- Alignment Table of Data Classes with the highest scores between data definitions.  

Grassland

/ Campo 

ET-EDGV 3.0- 

DEFINITION 

FRA – FAO 

DEFINITIO

N 

IBGE-Manual Uso e 

Cobertura- 

DEFINITION 

IBGE-Manual 

Vegetação 

DEFINITION 

Dynamic World -

DEFINITION 

CHAT GPT 

HARMONIZATIO

N 

Campo é uma 

forma particular 

de ocorrência 

(normalmente 

circunstancial) 

de uma 

vegetação …/ 
Grassland is a 

particular form 

of occurrence 

(usually 

circumstantial) 

of vegetation … 

Toda a terra 

que não seja 

classificada 

como 

floresta ou 

outra terra 

arborizada. 

/All land 

that is not 

classified as 

forest or 

other 

wooded 

land. 

Entendem-se como 

áreas campestres as 

diferentes categorias 

de vegetação 

fisionomicamente 

bem diversa da 

florestal…/ 

Grassland areas are 

understood as the 

different categories 

of vegetation that are 

physiognomically 

very different from 

forest vegetation… 

A Estepe 

Gramíneo-

Lenhosa é o tipo 

mais 

representativo 

dos campos do 

sul do 

 Brasil…/ The 

Grassy-Woody 

Steppe is the 

most 

representative 

type of grassland 

in southern 

Brazil… 

Áreas abertas 

cobertas por 

gramíneas 

homogêneas com 

pouca ou 

nenhuma 

vegetação alta.../ 

Open areas 

covered by 

homogeneous 

grasses with little 

or no tall 

vegetation… 

Campo é uma área 

de terra que não é 

classificada como 

floresta ou outra 

terra arborizada.../ 

Grassland is an 

area of land that is 

not classified as 

forest or other 

wooded land, 

Clean 

Grassland

/ Campo 

Limpo 

Vegetação 

predominanteme

nte herbácea, 

com raros 

arbustos e 

ausência de 

árvores. 

/Predominantly 

herbaceous 

vegetation, with 

rare shrubs and 

no trees. 

Toda a terra 

que não seja 

classificada 

como 

floresta ou 

outra terra 

arborizada./

All land 

that is not 

classified as 

forest or 

other 

wooded 

land. 

Entende-se como 

áreas campestres as 

diferentes categorias 

de vegetação 

fisionomicamente 

bem diversa da 

florestal…/Grassland 

areas are understood 

as the different 

categories of 

vegetation that are 

physiognomically 

very different from 

forest vegetation… 

A Estepe 

Gramíneo-

Lenhosa é o tipo 

mais 

representativo 

dos campos do 

sul do Brasil… 

/The Grassy-

Woody Steppe is 

the most 

representative 

type of grassland 

in southern 

Brazil… 

Áreas abertas 

cobertas por 

gramíneas 

homogêneas com 

pouca ou 

nenhuma 

vegetação alta... 

/Open areas 

covered by 

homogeneous 

grasses with little 

or no tall 

vegetation… 
 

O termo "Campo 

Gramíneo-

lenhoso" refere-se 

a áreas de terra 

que não são 

classificadas como 

florestas ou terras 

arborizadas…/ 

The term 

"Grassland-

Woodland" refers 

to areas of land 

that are not 

classified as forest 

or wooded land. 

 
3  https://anonymous.4open.science/r/Analogous-definitions_output-7362. 
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Dirty 

Grassland 

/Campo 

Sujo 

Vegetação com 

fisionomia 

herbácea e 

arbustiva, com 

arbustos e 

subarbustos 

espaçados entre 

si…/ Vegetation 

with herbaceous 

and shrubby 

features, with 

shrubs and 

subshrubs 

spaced apart…  

Terrenos 

definidos 

como 

“Outros 

terrenos 

Florestados

”, com mais 

de 0,5 

hectares; 

com árvores 

com mais 

de 5 metros 

de altura 

e.../ Land 

defined as 

“Other 

Forested 

Land” over 

0.5 

hectares; 

with trees... 

Entende-se como 

áreas campestres as 

diferentes categorias 

de vegetação 

fisionomicamente 

bem diversa da 

florestal, ou seja, 

aquelas que se 

caracterizam por …/ 

Countryside areas are 

understood as the 

different categories 

of vegetation that are 

physiognomically 

very different from 

forest vegetation, that 

is, those that … 

As maiores 

extensões de 

Estepe Parque 

foram observadas 

na parte leste do 

Planalto das 

Araucárias, na 

porção central do 

Planalto …/ The 

largest extensions 

of Steppe Park 

were observed in 

the eastern part of 

the Araucárias 

Plateau, in the 

central portion of 

the Rio … 

Áreas abertas 

cobertas por 

gramíneas 

homogêneas com 

pouca ou 

nenhuma 

vegetação alta. 

Outras áreas 

homogêneas de 

vegetação 

semelhante a 

gramíneas.../ 

Open areas 

covered by 

homogeneous 

grasses with little 

or no tall 

vegetation. Other 

homogeneous 

areas of grass-like 

vegetation… 

O termo "Campo 

Parque" refere-se 

a terrenos que não 

são 

predominantement

e florestados, 

agrícolas ou 

urbanos, com 

características 

específicas de 

vegetação.../ The 

term "Campo 

Parque" refers to 

land that is not 

predominantly 

forested, 

agricultural or 

urban, with 

specific vegetation 

characteristics.  

 

3.2 Quantitative Analysis of Semantic Alignment 

 

The degree of similarity was assessed by aligning semantic definitions from different sources with the Brazilian 

topographic mapping classes, represented as S = value. The highest similarity scores aligned with analogous classes, 

enabling the creation of alignment diagrams that map data model relationships. The data relation cardinalities, such as 1...* 

(one correspondence in one model to many in another) and *...1 (many correspondences in one model to 1 in another), 

illustrate the level of detail of the aligned data. For example, in the diagram comparing the ET-EDGV and the Brazilian 

Vegetation Manual, we observe that the forest classes in the topographic map are represented by a single class. In contrast, 

this concept is represented in vegetation mapping by six main classes, as illustrated in the diagram, and 26 more subclasses 

from these. All the definitions of the subclasses were inserted in the input file of the main code for all the models' classes. 

In this case of the forest cardinality 1...*, the highest score value was considered to represent it in the diagram. Figure 3 

illustrates the semantic alignment between Brazilian topographic maps and national and international data sources. Note 

that the data class terms have been kept in their original languages. 
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Figure 3 – Alignment Diagram between the Brazilian Topographic Map and other sources. 

 

 

3.3 Correlation Analysis 

A correlation matrix was constructed to analyze the semantic relationships between class definitions from different 

sources. This matrix represents the semantic similarity scores for all pairs of definitions, with values ranging from 0 (no 

similarity) to 1 (identical definitions). The matrix's main diagonal contains the value 1, as each definition is compared to 

itself. The matrix reveals how definitions from different sources closely align with the Brazilian topographic mapping 

standard (ET-EDGV 3.0). Table 2 shows a subset of these values, providing insights into the semantic alignment across 

datasets. Notably, higher similarity scores were observed for more detailed definitions from IBGE sources, while more 

generic. 
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Table 2 - Aligned data class correlation values (top scored) and nomenclature.  

ET-EDGV 3.0 

Class 
FRA - FAO 

Class/SCORE 
IBGE MUCT 

Class/SCORE 
IBGE MVB 

Class/SCORE 
Dynamic World 

Class/SCORE  

Grassland/ 
campo 

Other Land/ Outras 

Áreas/0.56 

Grassland Vegetation/ 

Vegetação 

Campestre/0.58 
Steppe / Estepe/0.6 Grass/Grama/0.64 

Cultivated 

Vegetation/ 
Vegetação 

Cultivada 

Other Land/ Outras 

Áreas/0.54 
Agricultural Area/Área 

Agrícola/0.75 Agriculture/ Agricultura/0.74 Crops/Colheita/ 0.73 

Mangrove/ 
Mangue Mangrove/ Mangue/0.52 Forest Vegetation/ 

Vegetação Florestal/0.7 

Fluvio Marine Influence 

Vegetation / Vegetação com 

influência Fluviomarinha/ 

0.86 

Flooded Vegetation/ 

Vegetação Submersa/ 

0.56 

Forest/ 
Floresta Forest/ Floresta/ 0.59 Forest Vegetation/ 

Vegetação Florestal/ 0.84 
Dense rainforest / Floresta 

Ombrófila Densa/ 0.8 Trees/ Árvores/0.48 

Wetland/ 
Área Úmida 

In Land 

Water  Bodies/corpos de 

água terrestre/ 0.56 

Wetland / Área Úmida 

0.58 

Continental Water Body/ 

Corpos D’água 

Continentais/0.59 
Water/Água/0.64 

Steppe Savannah 
/Caatinga 

Other Land with Tree Cover/ 

Outras terras com cobertura 

arbórea/ 0.55 

Grassland 

Vegetation/Vegetação 

Campestre/0.58 

Steppe Savannah/ Savana 

Estépica/ 0.62 

Shrub & Scrub/ 

Arbusto e Matagal 

/0.57 

Savannah /Cerrado Other Wooded Land/ Outras 

terras arborizada/ 0.44 

Grassland Vegetation/ 

Vegetação Campestre 

/0.69 
Savannah/ Savan/ 0.64 

Shrub & Scrub/ 

Arbusto e Matagal / 

0.62 

Campinarana Forest / Floresta/0.45 Forest Vegetation/ 

Vegetação Florestal /0.7 Campinarana/0.66 Trees/ Árvores/ 0.57 

Reforestation/ 
Reflorestamento Forest / Floresta/0.51 Forestry/ 

Reflorestamento/0.74 
Reforestation/ 

Reflorestamento /0.53 Trees/ Árvores/ 0.5 

Restinga Other Land/ Outra Terr/ 0.61 Wetland / Área Úmida 0.7 
Marine Influence Vegetation 

/ Vegetação com influência 

Marinha/ 0.69 
Grass/ Grama/ 0.63 

Marsh or Swamp/ 

Brejo ou Pântano 
In Land Water  Bodies/ 

corpos de água terrestre/0.63 
Wetland / Área Úmida 

0.83 

Rriver Influence Vegetation/ 

Vegetação com influência 

Fluvial/0.75 

Flooded Vegetation / 

Vegetação 

Submersa/0.68 

Dune/Duna Other Land/ Outra 

Terra/0.54 
Exposed Areas/Áreas 

Expostas/0.73 Dune / Duna/ 0.67 Bare Ground/ Terra 

nua/0.66 

Rocky Outcrop/ 
Afloramento 

Rochoso 

Other Land/ Outra 

Terra/0.57 
Exposed Areas/ Áreas 

Expostas/0.72 
Rocky Outcrop/ Afloramento 

Rochoso/ 0.68 
Bare Ground/ Terra 

nua/0.56 
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3.4 Visualizing Results with Heat Maps 

To better visualize these trends, a heat map was created to represent the correlations of each data element with every 

other element. This visualization helps to identify similarity between definitions from different sources. The average 

similarity between two classes can be calculated by grouping definitions from the same data class. For example, the 

similarity between all definitions of "Forest" across different sources was determined, allowing for further discussion on 

the usefulness of this coefficient. Figure 4 illustrates the heat map applied to these class definitions. It can be observed that 

greater generality definitions present low correlation values between the other definitions, resulting in a lighter tone line, 

as in lines 34 and 31. In contrast, high correlations occur through dark points or darker patches. 

 

Figure 4 – Forest Heat Map with the Scores class by class.  

 

            Maps were generated to provide a comparative perspective on aligned classes within the same geographical area. 

The maps generated employed the aligned classes for each model, with the objective of achieving a uniform presentation. 

The selected region was part of the state of Rio de Janeiro, and all images were represented at an approximate scale of 

1:250,000. The legends for the land use and land cover map and the topographic map are presented in a unified manner. 

The vegetation map was created in accordance with the regulations delineated in the pertinent technical map manual. The 
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legend was derived from the IBGE Environmental Information Bank, which can be accessed via the provided link4. The 

Dynamic World map, in combination with its associated legend, was retrieved from the project's official platform. The 

FAO vegetation map was excluded due to the lack of comparable data. Nevertheless, the comparative maps and their 

respective legends can be accessed via the following link5. 

 

Figure 5 – Perspective of comparative maps on aligned classes in Rio de Janeiro.

 
 

4. Discussion 

This study has provided valuable insights into the alignment between different land use and vegetation classification 

systems, specifically the IBGE Land Use and Land Cover and Vegetation Handbook, the ET-EDGV Topographic 

Mapping, and international standards such as Dynamic World and the Global Forest Resources Assessments (FRA). These 

 
4 https://bdiaweb.ibge.gov.br/#/consulta/vegetacao 
5 https://anonymous.4open.science/r/Comparative_Maps-3247/README.md 
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insights help elucidate both the potential for integration and the challenges faced with diverse mapping standards. Artificial 

intelligence and NLP techniques, such as those implemented in ChatGPT-4.0, also generated harmonized definitions. 

These may represent a promising path for improving the clarity and consistency of individual classification systems, though 

they do not offer a definitive solution. 

Integrating different land cover and land use (LULC) classification systems reveals the complexity of aligning datasets 

with varying levels of detail and thematic focus. The ET-EDGV, as a topographic mapping standard, provides a higher 

level of detail due to its reliance on aerial photography and field verification. This contrasts with global standards, which 

tend to be more generic and can encompass multiple ET-EDGV categories. Notably, the IBGE Brazilian Vegetation 

Handbook demonstrates a high degree of detail, often closely aligning with ET-EDGV classes, sometimes in a near 1:1 

correspondence. Integrating detailed topographic mapping data into broader LULC datasets tends to be more semantically 

accurate than the reverse, although some information loss is inevitable. For example, the FRA’s focus on forests illustrates 

semantic divergence arising from differing objectives and user needs. 

A central contribution of this work is the use of artificial intelligence (AI) to quantify and support semantic connections 

between classification definitions. Applying similarity values (S-values) allows for the measurement of class alignment, 

often mirroring human-level interpretation. These values revealed strong alignments in cases such as “Cultivated 

Vegetation” and “Crops,” highlighting the potential for seamless data integration. However, discrepancies emerged, such 

as those between "Grassland" in the IBGE LULC, "Reforestation" in the IBGE Vegetation Handbook, and ET-EDGV, 

indicating the need for further investigation. Unique regional classes, like “Campinarana” from the Amazon, exhibited low 

S-values compared to international classifications, reflecting the challenge of aligning region-specific types with broader, 

global categories. Similarly, discrepancies such as the low S-values for “Mangrove” between ET-EDGV and FRA suggest 

classification criteria or scope differences. 

Another important finding relates to the concept of cardinality in semantic alignment. One-to-one (1:1) class 

relationships typically resulted in higher S-values and stronger semantic alignment than one-to-many (1...*) relationships. 

This underscores the greater ease of achieving semantic accuracy when classifications map directly rather than requiring 

aggregation or disaggregation. These challenges are especially evident when translating detailed national categories, like 

ET-EDGV’s “Wetlands,” into more generalized international classes, often requiring simplifications that reduce specificity 

and may lead to misalignments. 

Despite these challenges, AI-assisted similarity scoring is valuable in identifying optimal alignments and promoting 

data interoperability. Future work could explore refining international standards to accommodate better region-specific 

ecosystems, such as “Campinarana,” improving the representation of unique biomes. Investigating low S-values in greater 

depth can also help to fine-tune AI models for improved semantic matching. Efforts to enhance AI methodologies should 

focus on better handling one-to-many relationships and the nuanced characteristics of thematic data. Furthermore, adopting 

open-source large language models (LLMs), such as Llama, could reduce dependence on proprietary technologies like 

those from OpenAI. 

5. Conclusion 

Describing the landscape has long been an essential mapping function, especially for topographic representations. This 

study confirms that topographic mapping, characterized by high detail and accuracy, can effectively be aligned with 

broader LULC and thematic classifications using AI-driven methodologies. By employing NLP techniques and using 

semantic similarity as a key measure, this research addressed the challenge of aligning disparate geospatial data sources, 

contributing to improved interoperability and more robust integration practices. The methodology outlined demonstrated 

that AI can bridge semantic gaps, creating connections between data sources that mirror human-level understanding and 

aligning with the principles of geosemantics as described by Kuhn (2005). When used thoughtfully, the study showed that 

semantic similarity values could guide data harmonization, reducing manual effort and minimizing human bias while 

ensuring consistency and relevance across varied mapping frameworks. The main result is characterized by the alignment 

between data classes through semantic similarity between formal definitions. While the focus was on Brazilian geospatial 
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data—highlighting unique ecosystems such as “Campinarana”—the methodology has global applicability. It provides a 

scalable framework for integrating diverse geospatial datasets. For further investigations, it is recommended to adopt local 

factors, such as climatic characteristics, to minimize the specificities of each formation, especially among global models.  

Future work should incorporate evolving AI models and expand the method to include additional ecosystems and data 

types. Continued advancements in NLP and AI are expected to enhance the semantic precision of data integration, fostering 

a deeper understanding of landscape representations and their semantic properties. 
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