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Resumo: Este artigo propde um método automatizado para aprimorar processos de fotogrametria terrestre mediante a deteccdo e
eliminagdo de elementos moveis (veiculos, pessoas) e estaticos (céu) utilizando o YOLOVS. O modelo gera mascaras bindrias que
excluem regides indesejadas, integrando-se ao pipeline de Structure from Motion (SfM) para melhorar a reconstrugdo 3D. Foram
utilizados datasets como Clouds-1000 (céu) e COCO (objetos moveis) para treinar o YOLOVS, validado em um estudo de caso de
documentagio 3D de uma edificagdo historica. Os resultados mostraram redugdo de 5,2% no erro de reprojecdo RMS, aumento de 5%
na densidade da nuvem de pontos e diminui¢do de 21,7% nos outliers, além de economia de 6% no tempo de processamento. A
abordagem demonstrou eficicia na exclusao automatizada de ruidos, porém enfrenta desafios em cenarios de baixo contraste. Conclui-
se que a integracdo do YOLOVS otimiza fluxos fotogramétricos, reduzindo dependéncia de etapas manuais e viabilizando aplicagdes
em gestdo urbana e preservagao cultural.
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Abstract: This article proposes an automated method to enhance terrestrial photogrammetry processes by detecting and removing
mobile (vehicles, people) and static (sky) elements using YOLOvVS. The model generates binary masks to exclude unwanted regions,
integrating into the Structure from Motion (SfM) pipeline to improve 3D reconstruction. Datasets such as Clouds-1000 (sky) and COCO
(mobile objects) were used to train YOLOVS, validated in a case study of 3D documentation of a historical building. Results showed a
5.2% reduction in reprojection RMS error, a 5% increase in point cloud density, and a 21.7% decrease in outliers, along with a 6%
reduction in processing time. The approach proved effective in automated noise removal but faced challenges in low-context scenarios.
The integration of YOLOv8 optimizes photogrammetric workflows, reducing reliance on manual steps and enabling applications in
urban management and cultural preservation.
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1. Introdu¢ao

A fotogrametria terrestre consolidou-se como uma ferramenta indispensavel para o cadastro urbano, reconstrugio
tridimensional de edifica¢des e acompanhamento de obras de engenharia. Na gestdo urbana, permite mapear propriedades,
infraestrutura e uso do solo com precisdo centimétrica, substituindo métodos tradicionais demorados (REMONDINO &
CAMPANA, 2020). Na documentag@o de patrimonio historico, viabiliza a criacdo de modelos tridimensionais detalhados
para restauracdo e preservacao, como visto em catedrais e sitios arqueologicos (GRUSSENMEYER et al., 2012). Em obras
civis, auxilia no monitoramento de etapas construtivas, comparando modelos gerados periodicamente com projetos
executivos para identificar desvios (SON & KIM, 2010). Plataformas colaborativas, como o Mapillary, ampliaram o acesso
a bancos de imagens georreferenciadas, enriquecendo bases de dados para treinamento de algoritmos de inteligéncia
artificial (IA) (BROSTOW et al., 2009). Além disso, cameras de smartphones e action cams tém democratizado a técnica,
gerando resultados profissionais a custos reduzidos.

O uso de dispositivos acessiveis revolucionou aplica¢des cotidianas. Por exemplo, engenheiros utilizam fotogrametria
com imagens obtidas por smartphones para registrar avancos de obras em tempo real, enquanto ¢ possivel obter imagens
do Mapillary para atualizar cadastros de infraestrutura urbana (MACUACUA et al., 2024). No entanto, a qualidade dos
produtos gerados depende de varios fatores como tipo de cdmeras, sensores acoplados, iluminagao, tomadas das imagens
(estatico ou cinematico), entre outros.

Uma das técnicas que mais revolucionou a fotogrametria nas ultimas décadas ¢ conhecida como SfM (structure from
motion), concebida para automatizar a producdo de modelos tridimensionais pela deteccdo automatica de pontos
homologos. Este processo ¢ utilizado em diversas aplicagdes de engenharia, mas seu sucesso depende da qualidade da
detecgdo de pares de pontos na superficie dos objetos de interesse, o que pode ser prejudicado pela presenga de outros
objetos nas imagens ou a propria textura das superficies visiveis (SNAVELY et al., 2008). Diante disso, este trabalho busca
estudar uma forma automadtica de eliminac¢do de elementos indesejados nas imagens, como céu, veiculos e pessoas, no
contexto de mapeamento do ambiente edificado pois esses componentes introduzem ruidos no processo de SfM
(WESTOBY et al., 2012). Quando o céu ocupa grande parte do quadro, por exemplo, a baixa textura da regido dificulta o
casamento de caracteristicas (feature matching), gerando falhas no alinhamento. Da mesma forma, objetos méveis criam
outliers na nuvem de pontos, comprometendo a precisdo dimensional (SNAVELY et al., 2008).

A presenca desses elementos exige etapas manuais de edigdo, e, nesse contexto, o modelo YOLOVS (You Only Look
Once, versdo 8) destaca-se como uma solu¢io avangada em deep learning para reconhecimento destas fei¢oes. Este modelo
combina alta velocidade e precisdo para segmentar automaticamente regides indesejadas, otimizando significativamente o
fluxo de trabalho. Sua arquitetura, fundamentada na CSPDarknetXX e aprimorada por mecanismos de ateng¢@o, como o
SEBlock (Squeeze-and-Excitation Block), permite a detecgdo robusta de objetos em escalas variaveis e sob condi¢des
luminosas complexas, tais como céus parcialmente nublados ou sombras projetadas (WANG et al., 2020) . Com capacidade
de processamento em tempo real, 0 YOLOv8 pode gerar mascaras bindrias que isolam areas problematicas, as quais podem
ser integradas diretamente a sofiwares especializados em fotogrametria para exclusdo automatizada durante o pré-
processamento. Em comparacéo a abordagens tradicionais, como filtros baseados em cor, 0 YOLOVS reduz falsos positivos
em 35% e demonstra maior adaptabilidade a cenarios dindmicos e variados (YUNPENG et al., 2024).

Este estudo propde um método automatizado para otimizar pipelines de fotogrametria terrestre utilizando YOLOVS
para segmentagdo de elementos indesejados. A abordagem ¢ validada em um caso real de documentagdo 3D de uma
edificac@o historica, comparando nuvens de pontos geradas com e sem elementos indesejados (céu, pessoas, veiculos),
utilizando dados topograficos como referéncia.

2. YOLOVS: Arquitetura, Treinamento e Aplicacdes em Segmentac¢io

O YOLOVS representa uma evolugao significativa na familia de modelos YOLO para detec¢ao de objetos em tempo
real, destacando-se por aprimoramentos arquiteturais e operacionais em relagao as versodes anteriores, como o YOLOVS e
YOLOv7 (BOESCH, 2024). Sua arquitetura mantém a estrutura modular composta por trés componentes principais:
backbone, neck ¢ head (Figura 1). O backbone, baseado em redes neurais convolucionais profundas (CSPDarknetXX), é
responsavel pela extracdo hierarquica de feicdes das imagens de entrada (ULTRALYTICS, 2022). O neck, que integra
camadas como PANet (Path Aggregation Network), combina feigdes multiescala para capturar objetos de diferentes
tamanhos. Por fim, o head realiza as previsdes finais, gerando coordenadas de caixas delimitadoras, probabilidades de
classes e, em configuragdes avangadas, mascaras de segmentagdo (REDMON et al., 2016).
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O treinamento de redes neurais como o YOLOVS envolve hiperpardmetros criticos, como tamanho do lote (batch size)
e épocas. O batch size define o nimero de amostras processadas antes de atualizar os pesos da rede. Valores maiores
aumentam a estabilidade do gradiente, mas exigem mais memoria; valores menores permitem maior frequéncia de
atualizacdes, porém com maior variancia (GOODFELLOW et al., 2016). Ja o nimero de épocas determina quantas vezes
o conjunto de treinamento completo é processado pelo modelo, garantindo exposicao suficiente aos padrdes dos dados. As
imagens de treinamento sdo o conjunto utilizado para ajustar os pesos do modelo, enquanto as imagens de validagdo,
separadas desse conjunto, avaliam a capacidade de generalizagdo, evitando ajuste excessivo aos dados de treinamento
(overfitting) (LIN et al., 2014).

O YOLOVS realiza trés tarefas principais em visdo computacional: deteccdo, que identifica e localiza objetos em
imagens por meio de caixas delimitadoras; classificacdo, que atribui rétulos aos objetos detectados (ex.: "céu",
"edificacdo"); e segmentacdo, que produz mascaras bindrias pixel a pixel, isolando precisamente a forma dos objetos
(MILLETARI et al., 2016).

Input: images, patches by data augmentation;
Backbone: pre-trained classification models for feature extraction,

1
|
|
| Vvarious levels for different scales of objects;
| Neck: up-sampling and concatenation mechanisms to fusion different
: stage feature maps;

) Head: predictions to classes and bounding boxes of detected objects.

Figura 1 — Arquitetura YOLO de detec¢do de objetos.
Fonte: KATEB et al. (2021).

Uma das principais inova¢des do YOLOVS ¢é a adog¢do de um paradigma anchor-free, eliminando a dependéncia de
anchor boxes pré-definidas para detecg@o. Isso simplifica o treinamento e reduz a complexidade computacional (BOESCH,
2024), prevendo diretamente o centro e as dimensdes dos objetos através das equagdes (1), onde o ¢ a fungdo sigmoide,
que normaliza as saidas entre 0 e 1; # e #, sdo deslocamentos preditos para o centro do objeto em relagdo a célula da grade,
i ej sdo as coordenadas da célula na grade de predigdo; ¢, e #;, correspondem aos logaritmos das razdes entre largura/altura
do objeto ¢ o fator de escala s, ¢ s € o fator de escala da célula da grade (REDMON et al., 2016).

cy =0(ty) +1, cy = O'(ty) +1, w=s.etw, h=s.etr (1)

Para aumentar a robustez do modelo, o YOLOvV8 emprega técnicas avangadas de aumento de dados, mais
especificamente mixup e mosaic. No mixup (equagoes 2), duas imagens I, e I, e seus rotulos associados y, € y,, codificados
em one-hot, sio combinados por interpolagdo linear, onde A é extraido de uma distribigdo Beta simétrica, com a (por
exemplo: 0,2) controlando a dispersdo: valores baixos tendem a gerar misturas proximas as imagens originais, enquanto
valores proximos a 0,5 produzem interpolagdo mais equilibrada (Zhang et al., 2018) . Essa pratica gera imagens e rotulos
suavizados (soft labels), o que favorece a generalizagdo, reduz o sobreajuste e melhora a calibragdo do modelo. Ja o mosaic
combina quatro imagens em uma unica grade, simulando cenérios com multiplos objetos e fundos heterogéneos, o que
melhora a generalizacdo do modelo para variagdes contextuais.
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Lpix = A0+ (1 —A).1,, Ymix = A Yo + (L= 1)y, A~ Beta(a, a) (2)

O treinamento do YOLOVS utiliza o otimizador Adam, que ajusta os pesos (8) da rede neural por meio da equacgao (3),
onde n ¢ a taxa de aprendizagem (ex.: 0,001), M, e ¥, sdo estimativas corrigidas de primeiro e segundo momentos, ¢ €
(107%) evita divisio por zero (KINGMA & BA, 2015). Valores muito altos de n podem levar & instabilidade na
convergéncia, enquanto valores muito baixos prolongam o treinamento.

m
Ot1) = 0c — U-\/ﬂ—t—ie (3)

A funcdo de perda total (L) combina trés componentes principais (equacdo 4), com pesos A»=0,05, A=0,5 e
Amask=0,1 para equilibrar as contribui¢cdes de cada termo. Para deteccdo (Ls..) utiliza Complete IoU (equacdo 5), que
incorpora métricas de distancia e aspecto, onde p ¢ a distdncia Euclidiana entre os centros das caixas prevista e real, ¢ ¢ a
diagonal do menor retingulo envolvente, e v mede a discrepancia na relagdo de aspecto (ZHENG et al., 2020). Essa
abordagem ¢ particularmente eficaz para a deteccdo de objetos em cenarios urbanos — ambientes caracterizados por alta
densidade de elementos, pequenos objetos e estruturas frequentemente sobrepostos ou parcialmente ocultos.

A perda de classificagdo (L) emprega Focal Loss para mitigar desbalanceamento de classes (equagdo 6), comum em
datasets com distribui¢@o desigual de objetos, onde p, ¢ a probabilidade estimada para a classe correta, balanceia classes
minoritarias, e atenua exemplos bem classificados (LIN et al., 2014). Essa func¢do ¢ essencial para garantir que classes
menos frequentes, como animais ou veiculos especificos, sejam corretamente identificadas, evitando falsos negativos.

Para segmentacao, aplica-se Dice Loss (equagdo 7), que € especialmente adequada para tarefas de segmentagao binaria,
onde y; e ¥, sdo os valores de ground truth e predicao, respectivamente (MILLETARI et al., 2016). Essa fung@o ¢€ critica
para garantir que as mascaras geradas tenham limites precisos, evitando a inclusdo de areas indesejadas.

Ltotal = Abox- Lbox + /1615- Lcls + Amask- Lmask (4)
p*(b,b")
Lpox =1—|IoU ————a.v (5)
c
Los = _at(l - pt)ylog(pt) (6)
L 2 Z?Izlyi ;91
X —
mee §V=1yi2 +Z§V=1y12 (7)

Na validagdo, métricas como loU (Infersection over Union) avaliam a sobreposi¢do entre caixas delimitadoras previstas
e reais (equacdo 8), com valores acima de 0,5 considerados satisfatorios (LIN et al., 2014). A precisdo (P) e o recall (R)
sdo calculados pelas equagdes 9, onde TP (True Positives) sdo detecgdes corretas, FP (False Positives) sdo falsos positivos
(ex.: céu classificado como edificacdo), e FN (False Negatives) sdo objetos ndo detectados (ex.: veiculos ignorados).

IoU Areadesobreposicao (8)
oU = -
AreadeUniao
__ P g _TP (9)
TP+FP TP+FN
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1 (10)
mAP = Nz APC
c=1

A precisdo média (mean Average Precision - mAP) é calculada através da equacdo 10, onde AP, ¢ a area sob a curva
Precision-Recall para a classe c. O mAP@50 considera IoU > 0,5, enquanto o mAP@50-95 avalia multiplos limiares de
IoU (0,5 2 0,95) (Lin et al., 2014).

Embora existam adapta¢des do YOLOvVS para acronaves remotamente pilotadas e inspegdo industrial, poucos estudos
focaram na filtragem de elementos indesejados em imagens terrestres para fotogrametria. A maioria das solugdes prioriza
a deteccdo de objetos especificos (como defeitos ou veiculos), mas ndo aborda a integracdo direta com fluxos de
processamento 3D. Este trabalho avanga ao treinar o YOLOv8 em um dataset especifico para céu, além de usar redes pré-
treinadas para pessoas, animais e veiculos - classes criticas para ruidos em SfM,sendo assim, classes indesejadas.

3. Materiais e Métodos

Este capitulo apresenta os procedimentos adotados para a detecgdo automatica de elementos indesejaveis em imagens
terrestres, com o objetivo de aprimorar processos de fotogrametria. A metodologia abrange desde a arquitetura e os
parametros de treinamento do modelo YOLOVS até a preparacéo e anotagao dos dados, culminando na geragdo de mascaras
binarias, sua integracdo no pipeline fotogramétrico e métricas de avaliagdo.

Pontos de controle

Anilise de métricas

Anilise
comparativa dos
resultados

Dados COCO pré-
treinados

§1imangens de Anilise visual das
validagao maéscaras

3 Capitulo 3.1 Capitulo 3.4 i capitulo 35
fererranssnanssnanssnanassanansd Sorarssrassinassenarnenaneed LI - PP |

LEGENDA
Dados existentes
(nputs)

Figura 2 — Diagrama do fluxo de trabalho: métodos, dados de entrada, dados gerados e andlises.
Fonte: Autores (2025).

3.1 Preparaciio dos Dados: Conjuntos e Contexto de Aplicacao

Para o treinamento e validagdo do modelo, foram utilizados diferentes conjuntos de dados, cada um com caracteristicas
especificas que contribuem para a robustez e generalizagdo do modelo. O Clouds-1000 (JUNCKLAUS MARTINS et al.,
2022) é um dataset composto por 1000 imagens do céu capturadas com cdmeras direcionadas para o horizonte nas diregdes
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norte e sul, em Florian6polis/SC, Brasil. As imagens foram coletadas durante o periodo de marco a junho de 2021,
proporcionando uma variedade de condigdes atmosféricas e luminosas, como céu claro, nublado e com diferentes
intensidades de iluminagdo solar. Esse conjunto de dados ¢ particularmente valioso para treinar modelos na identificagdo
e segmentacdo de areas de céu em imagens terrestres.

Além do Clouds-1000, foram utilizadas 51 imagens de acervo pessoal, capturadas com uma camera GoPro Fusion em
diferentes locais e condi¢des de cobertura do céu, para validagdo do treinamento. Essas imagens asseguram que o modelo
seja exposto a cenarios variados e possa generalizar seu desempenho para diferentes contextos.

Para a segmentacdo de pessoas, animais e veiculos, foi empregado o conjunto de dados COCO, que contém mais de
200.000 imagens rotuladas, abrangendo 80 categorias de objetos. Este dafaset ¢ amplamente utilizado na comunidade de
visdo computacional devido a sua diversidade e riqueza de anotagdes, permitindo que modelos aprendam a identificar e
segmentar uma ampla gama de objetos em contextos variados (LIN et al., 2014).

As imagens utilizadas para inferéncia do modelo YOLOvVS8 e geracdo das mascaras correspondem a edificagdo
Hansahoehe (ZEMKE, 2024), localizada em Ibirama, Santa Catarina. O conjunto é composto por 471 imagens do entorno
da edificagdo, capturadas com uma cdmera GoPro Hero adaptada a um capacete. A coleta foi realizada por uma pessoa
que caminhou ao redor da edificagdo, capturando uma imagem a cada dois segundos. As imagens foram obtidas em formato
bruto, sem tratamento de estabilizacdo, correcdo de cor ou outros pos-processamentos. Por se tratar de uma cdmera com
lente olho de peixe, o formato bruto apresenta um halo preto no entorno de todas as fotos, o que exigiu a criagdo manual
de uma mascara para eliminar essa area em todas as imagens. A obteng@o das imagens ocorreu em um momento com
condigdes atmosféricas atipicas, caracterizadas por céu aberto, mas com presenca de fumaga devido aos incéndios na
Amazonia, o que adicionou complexidade ao processo de segmentacao.

A precisdo geométrica do projeto foi garantida através de um levantamento fotogramétrico prévio. Deste levantamento,
foram selecionados 26 pontos notaveis estrategicamente distribuidos ao redor da edificacdo. Deste total, cinco pontos
serviram como GCPs para o ajuste geométrico inicial do modelo - quantidade suficiente para resolver matematicamente
os seis pardmetros de transformacdo espacial (rotago, translacdo e escala nos trés eixos), conforme demonstrado por
Agiiera-Vega et al. (2017). Os 21 pontos restantes foram utilizados como CPs para validag@o independente, permitindo
calcular o Erro Quadratico Médio (RMSE) e verificar a qualidade da reconstrugdo em toda a area de interesse, seguindo
as especificagdes do Padrdo de Exatiddo Cartografica (PEC) para areas de até cinco hectares.

o —

!
— e -
o

LIyt 1

el

Figura 2 — Modelo digital de referéncia do edificio Hansahoehe e pontos de controles e de chegagem.

Fonte: Autores (2025).

A combinagdo desses conjuntos de dados e a metodologia adotada para coleta e processamento das imagens garantem
que o modelo YOLOVS seja treinado e validado em condigdes diversas e desafiadoras, assegurando sua aplicabilidade em
cenarios reais. A segmentacdo precisa de areas como céu, pessoas e veiculos € essencial para eliminar ruidos e artefatos
indesejados no processo de reconstrugdo fotogramétrica.
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3.2 Anotaciio e Pré-processamento de Imagens

Para o treinamento e validagdo do modelo é necessario informar a imagem e o arquivo texto contendo a delimitacdo
das areas e cada classes a ser utilizada. A delimitacdo das areas do céu nas imagens foi realizada utilizando o aplicativo
CVAT.ai (MUSLEH et al., 2023), uma ferramenta de cédigo aberto para anotagdo de dados de visdo computacional. O
CVAT oferece uma interface intuitiva para a criagdo de caixas delimitadoras, poligonos e mascaras em imagens e videos,
facilitando a preparacdo de conjuntos de dados anotados para treinamento de modelos. Sua flexibilidade e suporte a
multiplos formatos de dados tornam-no adequado para projetos que exigem anotagdes precisas e eficientes.

Devido as limitagdes de tempo de uso, espaco em disco e memoria RAM no ambiente de processamento Google Colab,
as imagens foram redimensionadas para 640x640 pixels. O Google Colab oferece recursos de GPU para treinamento de
modelos, porém com restrigdes que podem afetar o desempenho e a duracdo das sessdes de processamento. Essas
limitagdes tornam necessario o ajuste do tamanho das imagens ¢ a gestio cuidadosa dos recursos disponiveis para garantir
a eficiéncia do processo de treinamento.

O redimensionamento das imagens visa equilibrar a qualidade da informag@o visual com as restricdes computacionais,
assegurando que o modelo possa ser treinado de maneira eficaz dentro dos limites impostos pelo ambiente de
desenvolvimento. Além disso, a padroniza¢do das dimensdes das imagens contribui para a consisténcia dos dados de
entrada, facilitando o processo de treinamento e inferéncia do modelo.

3.3 Treinamento do Modelo com Transferéncia de Aprendizado

O treinamento do modelo YOLOv8 foi conduzido conforme as seguintes ectapas: inicialmente, foi realizada a
configuracdo do ambiente, utilizando o Google Colab com GPU habilitada, instalagdo das dependéncias necessarias e
preparagdo do ambiente para execucdo do YOLOv8. Em seguida, procedeu-se a preparagdo dos dados, integrando os
conjuntos de dados anotados (Clouds-1000 ¢ COCO) e dividindo-os em conjuntos de treinamento e validagdo, assegurando
uma distribuigdo equilibrada das classes e cenarios.

Apds alguns testes iniciais, a defini¢do dos hiperparametros envolveu o ajuste de pardmetros como taxa de
aprendizagem automatico, tamanho do lote (16) e ntimero de épocas (50 épocas), baseando-se em técnicas de otimizagao
de hiperparametros. A escolha adequada desses pardmetros ¢ crucial para garantir a convergéncia do modelo e evitar
problemas como sobreajuste ou subajuste (Goodfellow et al., 2016). Durante o treinamento, foram monitoradas as métricas
de desempenho, permitindo ajustes dindmicos nos hiperpardmetros conforme necessario para otimizar os resultados.

A etapa de validacdo consistiu na avaliagdo do modelo treinado utilizando o conjunto de validag@o, analisando métricas
como mAP, precisdo e recall. Esta avaliagdo continua permitiu identificar possiveis areas de melhoria ¢ assegurar que o
modelo mantivesse um desempenho consistente em dados ndo vistos durante o treinamento, garantindo sua capacidade de
generalizacdo.

3.4 Inferéncia do Modelo

Apds o treinamento, o modelo foi aplicado a 417 imagens capturadas com uma camera GoPro Fusion, equipada com
lente olho de peixe, no entorno do edificio Hansahoehe. Para combinar as detecgdes do modelo customizado (céu) e do
modelo COCO (objetos moveis), desenvolveu-se um script em Python que realiza a inferéncia com um limiar de confianga
ajustado para 0,2. Esse valor foi selecionado para equilibrar a sensibilidade do modelo, garantindo a deteccdo eficaz de
elementos indesejaveis sem introduzir excesso de falsos positivos.

O script gera mascaras binarias em formato de imagem (extensdo JPG ou PNG), nas quais as areas Uteis para a
fotogrametria, como edificagdes e terrenos, sdo representadas em branco (valor 255), enquanto as areas indesejadas,
incluindo céu, pessoas e veiculos, sdo marcadas em preto (valor 0).

3.5 Integracio no Pipeline de Fotogrametria

Para avaliar o impacto da exclusdo de areas indesejadas no processo fotogramétrico, foram capturadas 417 imagens do
edificio Hansahoehe, cada uma acompanhada de sua respectiva mascara bindria. Essas imagens e mascaras foram
processadas utilizando o software Agisoft Metashape Professional Edition, que permite a importagdo de mascaras
associadas as imagens de entrada, facilitando a definicao de regides a serem ignoradas durante o processamento.
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No Metashape, cada imagem foi vinculada ao seu respectivo arquivo de mascara, assegurando que elementos como
céu, pessoas ¢ veiculos fossem corretamente identificados e excluidos das etapas subsequentes. Essa associag¢do orienta o
software a considerar apenas as regides de interesse nas imagens, aprimorando a precisdo da reconstrug¢do 3D.

Além disso, foram inseridos quatro pontos de controle no terreno (Ground Control Points - GCPs) com coordenadas
conhecidas e 25 pontos de verificagdo (Check Points - CPs). Os GCPs sdo utilizados para georreferenciar e escalar o
modelo durante o processo fotogramétrico, enquanto os CPs servem para avaliar a acuracia dos produtos gerados.

A precisdo do modelo foi avaliada através do calculo do Erro Total dos GCPs e dos CPs, expressos em centimetros. O
Erro Total dos GCPs reflete a discrepancia média entre as coordenadas conhecidas dos pontos de controle e as coordenadas
estimadas pelo modelo. Similarmente, o Erro Total dos CPs indica a diferenca média entre as coordenadas reais dos pontos
de verificacdo e as estimadas pelo modelo. Esses erros podem ser calculados utilizando a féormula do Erro Médio
Quadratico (Root Mean Square Error — RMSE), equagao (12), onde “n” é o nimero de pontos e “d;” ¢ a diferenca entre a
coordenada medida e a coordenada estimada para o ponto i (Queiroz & Gomes, 2001).

(12)

Durante o alinhamento das fotos, o SfM detecta pontos-chave (keypoints) em cada imagem e os corresponde entre
diferentes fotos para identificar pontos de amarragdo (tie points). As mascaras garantem que apenas as areas nao
mascaradas contribuam para essa correspondéncia, evitando que elementos indesejados influenciem o alinhamento.

A qualidade do alinhamento é quantificada pelo Erro Médio Quadratico de Reprojecdo (Reprojection RMS), medido
em pixels. Este valor representa a média das discrepancias entre as posigdes reprojetadas dos pontos de amarragéo e suas
posi¢des observadas nas imagens. Um RMS menor indica um alinhamento mais preciso (HARTLEY & ZISSERMAN,
2004).

Apds o alinhamento, o sofiware gera uma nuvem de pontos densa representando a superficie do objeto de interesse. A
densidade dessa nuvem ¢ expressa em pontos por metro quadrado (pts/m?) e depende da resolucdo das imagens e da
sobreposicao entre elas. Uma maior densidade de pontos resulta em uma representacao mais detalhada do objeto estudado.

Durante o processamento, pontos considerados discrepantes (outliers) foram identificados e removidos para melhorar
a qualidade do modelo. Outliers sdo pontos que se desviam significativamente do padrao geral dos dados e podem resultar
de erros de medi¢@o ou correspondéncias incorretas. A remogao desses pontos € essencial para reduzir ruidos e artefatos
no modelo final.

A utilizagdo de mascaras no fluxo de trabalho fotogramétrico visa aprimorar a qualidade da reconstrucdo
tridimensional, minimizando a interferéncia de elementos ndo desejados e otimizando o processo de modelagem. Os
resultados dessa abordagem serdo detalhados no Capitulo 5.

4. Resultados

Este capitulo apresenta os resultados obtidos com a aplicagdo do modelo YOLOVS na deteccdo automatica de elementos
indesejaveis em imagens para fotogrametria terrestre. Os resultados sido divididos em trés se¢des principais: (1)
desempenho do modelo YOLOVS no treinamento e validagdo, (2) geragdo de mascaras binarias a partir de novas imagens,
e (3) impacto da utilizagdo das mascaras no pipeline de fotogrametria digital. As métricas utilizadas para avalia¢do incluem
precisdo, recall, mAP@50, erro de reprojegdo RMS, densidade da nuvem de pontos e tempo total de processamento.

4.1. Treinamento do YOLOVS8 para Deteccio de Céu

Durante o treinamento do modelo YOLOv8n-seg para segmentacdo automatica de areas do céu em imagens terrestres,
foram coletados dados ao longo de 50 épocas, com validagdo das métricas em tempo real e uma avaliagdo final utilizando
o modelo otimizado. Na 50* época, o modelo alcancou os resultados na tabela 1.
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Tabela 1 — Métricas dos valores de treinamento Yolov8 na 50 época.

Métrica Box (Deteccio) Mask (Segmentaciio)
Precisao (P) 92,4% 92,3%
Recall (R) 53,3% 53,3%
mAP@50 71,8% 67,8%
mAP@50-95 52,4% 52,1%

Fonte: Autores (2025).

A precisdo elevada (aproximadamente 92%) indica que o modelo raramente classifica erroneamente regides nao
pertencentes ao céu como céu, minimizando falsos positivos. No entanto, o recall de 53,3% sugere que o modelo pode ndo
detectar todas as areas de céu, especialmente em cenarios complexos, como quando o céu esta parcialmente obstruido por
vegetagdo ou estruturas. O mAP@50 de 67,8% para segmentacdo reflete uma sobreposicdo média de 50% entre as
mascaras previstas e as reais, o que ¢ adequado para aplicacdes fotogramétricas que exigem a exclusdo precisa de regides
ndo estruturais. Os resultados obtidos foram comparados com estudos similares que utilizaram o YOLOvVS em tarefas de
segmentacao, conforme tabela 2.

Tabela 2 — Comparados com estudos similares que utilizaram o YOLOVS.

Estudo mAP@50 (Segmentacgio) Aplicacgio
Este Trabalho 67,8% Céu em imagens terrestres
Wang et al. (2023) 72,1% Objetos urbanos em aeronaves remotamente pilotadas
Zhang et al. (2023) 65,4% Segmentagdo de vegetacdo

Fonte: Autores (2025).

O desempenho do modelo neste estudo estd alinhado com a literatura existente, indicando resultados consistentes.
Entretanto, ha espaco para melhorias, especialmente em cenarios de baixo contraste, como em dias nublados, onde a
distingdo entre o céu e outros elementos pode ser mais desafiadora.

4.2. Geracao de Mascaras Binarias

O tempo médio do tempo de inferéncia para localizag@o do céu foi de 9,5 milissegundos e para os demais elementos
(pessoas, animais e veiculos) foi de 12 milissegundos. Com estes valores seria possivel, por exemplo, o uso de sistemas
em tempo real. Evidentemente, para cada caso, haveria a necessidade de se testar no hardware disponivel.

Figura 3 — Imagem original a esquerda e a direita sua sobreposi¢cdo com mascaras.
Fonte: Autores (2025).



Zucatelli, G. F.; Centeno, J. A. S., Rev. Geociénc. Nordeste, Caico, v.11, n.2, (Jul-Dez) p.119-131, 2025. 128

Analisando visualmente as mascaras sobrepostas as imagens originais, constata-se que a eficiéncia do método ¢ valida
para grande parte da area do céu. Algumas bordas adentram os demais objetos (arvores, edificagdo) e em outros pontos se
afastam. A figura 4 apresenta um destes casos, onde pode se notar que cabos aéreos sdo desprezados. H4 também alguns
casos em que elementos, como paredes ¢ tetos, com texturas e cores muito parecidas ao céu, foram classificados como céu
(figura 5).

Figura 4 — Demonstragdo de mdscaras sobrepostas as imagens originais.
Fonte: Autores (2025).

4.3. Impacto no Pipeline de Fotogrametria

A introducdo das mascaras geradas pelo modelo YOLOVS ao fluxo de reconstrug@o fotogramétrica no software Agisoft
Metashape teve efeitos contrastantes sobre a qualidade geométrica e a eficiéncia computacional do modelo. A Tabela 3
resume as principais métricas obtidas com e sem a aplicagdo das mascaras.

Apesar de melhorias em aspectos como o erro de reprojecéo, densidade da nuvem de pontos e tempo de processamento,
observou-se um aumento nos erros posicional dos pontos de verificagdo (CPs), sugerindo uma perturbagéo no equilibrio
geométrico do bloco fotogramétrico.

A reprojecdo RMS — que mede o desvio médio entre a posi¢do observada e reprojetada dos tie points — apresentou
uma redugdo de 0,944 para 0,897 pixels, representando uma melhora de 5,2%. Essa redugdo indica que o modelo se tornou
internamente mais consistente, uma vez que as mascaras impediram que regides ndo informativas (como céu ou objetos
moveis) interferissem no ajuste dos pontos de correspondéncia entre imagens.

A densidade da nuvem de pontos também foi beneficiada, passando de 496,7 pts/m? para 521,5 pts/m?, um aumento de
5,0%. Esse crescimento sugere que, ao eliminar areas ndo relevantes, o algoritmo pdde concentrar o processamento em
regides texturizadas e estruturalmente significativas. Além disso, o numero total de pontos aumentou em 3,2%, ¢ a
propor¢do de outliers removidos caiu de 15,7% para 12,3% (redugdo de 21,7%), indicando que o modelo gerado com
mascaras ¢ mais limpo e menos ruidoso.

O tempo total de processamento também foi reduzido em 6,0%, passando de 21,8 minutos para 20,5 minutos, o que
evidencia uma eficiéncia computacional superior ao evitar o processamento de regides irrelevantes.

No entanto, as métricas de acurdcia posicional revelam um comportamento oposto. O erro total nos pontos de
verificagdo (Check Points) aumentou de 8,25 cm para 9,05 cm, o que representa uma piora de 8,8%. Da mesma forma, o
erro nos pontos de controle (GCPs) passou de 1,18 cm para 1,19 cm, embora a diferencga de 0,8% seja marginal. A piora
no desempenho geométrico externo pode ser explicada pela exclusdo acidental de regides da edificagdo importantes para
o travamento do bloco fotogramétrico — especialmente partes superiores de fachadas com cor clara ou areas envidragadas,
erroneamente classificadas como céu pelo modelo.

Essa exclusdo comprometeu a quantidade e distribuicdo de tie points nessas regides criticas, enfraquecendo a estrutura
do bloco e afetando negativamente a triangulagdo espacial. Como resultado, o modelo reconstruido com méscaras, embora
mais limpo e internamente coerente, apresentou desempenho inferior em termos de acurécia posicional global.
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Tabela 3 — Métricas dos resultados comparativos entre processamentos fotogramétricos.

Métrica Com Mascaras Sem Mascaras Melhoria
Erro Total GCPs (cm) 1,19 1,18 -0,8%
Erro Total Check Points (cm) 9,05 8,25 -8,8%
Reprojecdo RMS (pix) 0,897 0,944 5,2%
Numero de Pontos 902.266 874.146 3,2%
Densidade (pts/m?) 521,5 496,7 5,0%
Pontos Outliers Removidos 12,3% 15,7% 21,7%
Tempo Total (min) 20,5 21,8 6,0%

Fonte: Autores (2025).

5. Discussao

Os experimentos realizados demonstram que a aplicagdo de segmentagdo automatica via YOLOV8 pode aprimorar
aspectos internos do pipeline de fotogrametria, a0 mesmo tempo em que introduz desafios no controle da acuracia
posicional. A aplica¢do das mascaras resultou em uma melhora significativa da qualidade interna do modelo, com redugéo
no erro de reprojec¢do (5,2%), aumento da densidade da nuvem de pontos (5,0%), incremento no nimero total de pontos
reconstruidos (3,2%) e redugdo consideravel na proporgdo de outliers (21,7%). Esses indicadores sugerem que a remogao
de regides como céu, veiculos e pessoas contribuiu para um modelo tridimensional mais limpo e eficiente, com menor
interferéncia de elementos indesejados.

Além disso, observou-se uma reducdo no tempo total de processamento, que passou de 21,8 minutos para 20,5 minutos
(diminuigdo de 6,0%). Esse ganho de desempenho esta relacionado a exclusdo prévia de areas ndo informativas, permitindo
que o software concentrasse os recursos de processamento nas superficies relevantes para a reconstrugio.

No entanto, apesar das melhorias internas, as métricas externas de controle apresentaram comportamento inverso. O
erro total nos pontos de verificagdo aumentou de 8,25 cm para 9,05 cm (piora de 8,8%), e o erro nos GCPs teve uma leve
elevacao de 1,18 cm para 1,19 cm (0,8%). Essa discrepancia indica que, embora o modelo tenha se tornado mais coerente
internamente, houve um comprometimento na rigidez do bloco fotogramétrico em relagdo ao referencial externo.

Uma possivel explicagdo para essa piora na acuracia esta no fato de que, em algumas imagens, areas importantes das
fachadas da edificagdo foram erroneamente classificadas como céu e removidas durante a segmentacdo. Essa exclusdo
resultou em menor disponibilidade de keypoints nessas regides estruturais, afetando a triangulagdo e o travamento espacial
do bloco. A consequéncia ¢ uma leve degradagdo na precisdo posicional, especialmente em areas verticais com geometria
repetitiva ou baixa textura.

E importante destacar que seria possivel mitigar essa perda de acuracia aumentando o nimero de pontos de controle
(GCPs) inseridos no modelo. A presenca de mais GCPs bem distribuidos contribuiria para a estabilizacdo do bloco
fotogramétrico e para o refinamento da orientacdo externa, compensando eventuais perdas na triangulacdo gerada
automaticamente. No entanto, essa estratégia exige maior esforco em campo, aumentando significativamente o tempo
necessario para coleta, georreferenciamento e marcagdo dos pontos. Em trabalhos novos, especialmente aqueles com
restrigdes operacionais ou grandes extensodes, essa solugdo se torna menos viavel, motivo pelo qual a melhoria da
segmentagdo automatica e a revisao seletiva das mascaras ainda se mostram alternativas mais eficientes e escalaveis.

Esses resultados evidenciam a importancia de calibrar cuidadosamente o modelo de segmentagéo para evitar a exclusdo
indevida de superficies criticas. Em aplica¢des que exigem elevado rigor geométrico, a revisdo manual das mascaras, ou o
uso de classificadores especificos para arquitetura urbana, pode ser necessaria para mitigar os efeitos adversos da
segmentacao automatizada.

6. Conclusao

Este estudo validou uma metodologia automatizada para remog¢ao de elementos indesejaveis em imagens terrestres,
integrando segmentagdo semantica com YOLOvV8 ao processo de Structure-from-Motion (SfM). O modelo treinado
alcangou um desempenho satisfatério na segmentacao do céu (mAP@50 = 67,8%), reduzindo o numero de outliers na
nuvem de pontos em 21,7% e o erro de reproje¢do RMS em 5,2%. Também foi registrada uma redugao de 6,0% no tempo
total de processamento, com aumento da densidade de pontos (+5,0%) e do numero total de pontos reconstruidos (+3,2%).
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Esses resultados confirmam que a automatizagdo proposta ¢ eficiente em cendrios urbanos dindmicos, melhorando a
qualidade estrutural da nuvem de pontos e otimizando o desempenho computacional.

Contudo, as analises também demonstraram que a aplicagdo automatica de mascaras pode comprometer a acuracia
posicional dos produtos gerados. Observou-se um aumento de 8,8% no erro dos pontos de verificagdo (check points), o
que foi atribuido a exclusdo indevida de regides estruturais da edifica¢do, erroneamente classificadas como céu. Essa
remog¢do reduziu a quantidade de informagdes disponiveis para o alinhamento e travamento do bloco fotogramétrico,
impactando a estabilidade geométrica da solug@o.

Embora uma estratégia possivel para mitigar esse impacto seja o aumento do numero de pontos de controle (GCPs),
essa abordagem implica em maior tempo e esfor¢o de coleta em campo, o que pode inviabilizar sua aplicacdo em
levantamentos novos, especialmente em contextos com restricdes operacionais. Dessa forma, destaca-se a importancia de
calibrar o modelo de segmentacdo para que ele preserve superficies criticas a reconstrucdo, além da necessidade de
mecanismos de validagdo ou revisdo assistida das mascaras aplicadas.

Para avancos futuros, recomenda-se a explora¢do de arquiteturas hibridas (e.g., YOLOvVS combinados com Swin
Transformers), que possam oferecer segmentagdes mais refinadas em contextos urbanos. Também ¢é fundamental expandir
os datasets utilizados no treinamento, incluindo imagens capturadas sob diferentes condi¢des atmosféricas e com variagdes
de textura e iluminagdo, a fim de aumentar a robustez ¢ a capacidade de generalizacdo do modelo. A integragdo com
ferramentas emergentes como o Segment Anything (KIRILLOV et al., 2023),pode oferecer refinamento interativo das
mascaras ¢ permitir uma segmentag@o contextual mais precisa.

Em sintese, a abordagem proposta elimina etapas manuais na preparagdo das imagens, melhora a qualidade estrutural
dos modelos tridimensionais e se alinha as demandas contemporaneas por fluxos de trabalho inteligentes, eficientes e
replicaveis, especialmente em contextos de documentacdo urbana e patrimonio arquitetonico.
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