Estimativa da turbidez da água utilizando imagens de RPA’s associadas às técnicas de Machine Learning
Water turbidity estimation using RPA’s images and Machine Learning techniques
DOI:
https://doi.org/10.21680/2447-3359.2024v10n1ID34612Resumo
A qualidade da água em reservatórios é fundamental para a preservação dos ecossistemas e da saúde humana. A turbidez, que avalia a presença de partículas suspensas, é um indicador importante, geralmente medido in loco com equipamentos onerosos. No entanto, com o avanço da Inteligência Artificial (IA), é possível estimar a turbidez usando imagens orbitais associadas a índices como o NDTI (Normalized Difference Turbidy Index). Além de sensores orbitais, outra tecnologia que vem sendo muito utilizada para vários fins são as aeronaves remotamente pilotadas (RPA’s) que possibilitam a geração de produtos fotogramétricos digitais como Modelos Digitais de Elevação e Ortofotografias em grandes níveis de detalhes. Nesse sentido, este estudo visa estimar a turbidez em reservatórios usando imagens de RPA e técnicas de Machine Learning como a RNA (Redes Neurais Artificiais), SVM (Support Vector Machine), GBM (Gradient Boosting Machine) e RF (Random Forest). Assim, foram feitos levantamentos in loco com o equipamento turbidímetro e com RPA para obtenção dos dados para análise de regressão para correlacionar os dados. Por meio dos resultados obtidos, pôde-se perceber que a predição da turbidez utilizando o RF e a RNA apresentaram os melhores desempenhos.
Downloads
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Revista de Geociências do Nordeste
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.