Processamento de Linguagem Natural como ferramenta de suporte em documentos jurídicos: uma revisão sistemática
Palavras-chave:
Processamento de linguagem natural; Documentos judiciais; Aplicação jurídica.Resumo
A sobrecarga de processos judiciais tem aumentado cada vez mais, interferindo diretamente na execução das atividades nos tribunais. Começamos a buscar auxílio na inteligência artificial, através do uso de ferramentas e técnicas de processamento de documentos, promovendo uma mudança significativa na forma como as atividades jurídicas são realizadas. Nesse sentido, foi realizada uma revisão sistemática, onde foram consultados o Google Scholar, Portal de periódicos Capes, Science Direct - Elsevier e IEEE Xplore. As publicações foram obtidas com o intuito de responder a 4 perguntas: (1) Quais são as publicações científicas mais relevantes relacionadas à aplicação de NLP em documentação jurídica no período de 2017 a 2022; (2) quais técnicas e ferramentas de NLP foram aplicadas no tratamento de documentos no domínio jurídico; (3) o desempenho obtido ao aplicar NLP em novos documentos do âmbito jurídico brasileiro; (4) quais bases de dados jurídicas existentes no contexto brasileiro possuem algum pré-processamento que auxilie a NLP. A literatura recomenda o uso de algoritmos de deep learning para resolver problemas envolvendo NLP, onde sua aplicação, combinada com técnicas de embedding de texto em domínios específicos, melhora significativamente os modelos gerados.
Downloads
Referências
BARROS, F. M. C.; SILVA, C. D.; SILVA, I. R. M.; MARTINS, V. S.; ARAÚJO, A. J. S. Machine Learning Algorithms Applied on Classification of Processes for Conciliation on Brazilian Labour Judiciary. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 20., 2023, Belo Horizonte/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023. p. 389-402. ISSN 2763-9061. doi: https://doi.org/10.5753/eniac.2023.234189.
CHAU, C.-N.; NGUYEN, T.-S.; NGUYEN, L.-M. VNLawBERT: A Vietnamese Legal Answer Selection Approach Using BERT Language Model. 2020 7th NAFOSTED Conference on Information and Computer Science (NICS), Ho Chi Minh City, Vietnam, 2020, p. 298-301, doi: 10.1109/NICS51282.2020.9335906.
CLAVIÉ, B.; GHEEWALA, A.; BRITON, P.; ALPHONSUS, M.; LAABIYAD, R.; PICCOLI, F. LegaLMFiT: Efficient Short Legal Text Classification with LSTM Language Model Pre-Training. arXiv preprint arXiv:2109.00993, 2001. doi: https://doi.org/10.48550/arXiv.2109.00993
CORREIA, F. A.; ALMEIDA, A. A. A.; NUNES, J. L.; SANTOS, K. G.; HARTMANN, I. A.; SILVA, F. A.; LOPES, H. Fine-grained legal entity annotation: A case study on the Brazilian Supreme Court. Information Processing & Management, v. 59, n. 1, 2022, p. 102794. ISSN 0306-4573, doi: https://doi.org/10.1016/j.ipm.2021.102794.
DE OLIVEIRA, R. S.; NASCIMENTO, E. G. S. Brazilian Court Documents Clustered by Similarity Together Using Natural Language Processing Approaches with Transformers. arXiv preprint arXiv:2204.07182, 2022. doi: 10.48550/arXiv.2204.07182
HSIEH, H.-P.; JIANG, J.; YANG, T.-H.; Hu, R.; WU, C.-L. Predicting the success of mediation requests using case properties and textual information for reducing the burden on the court. ACM Journals, v. 2, n. 4, 2022, p. 1–18. Nova York, NY, EUA. doi: https://doi.org/10.1145/3469233*
LUZ DE ARAÚJO, P. H.; CAMPOS, T. Topic Modelling Brazilian Supreme Court Lawsuits. 33rd International Conference on Legal Knowledge and Information Systems (JURIX 2020), v. 334, 2020, p. 113–122. Praga, República Tcheca. doi: http://dx.doi.org/10.3233/FAIA200855.
LUZ DE ARAÚJO, P. H.; CAMPOS, T.; BRAZ, F. A.; SILVA, N. C. VICTOR: a Dataset for Brazilian Legal Documents Classification. In Proceedings of the Twelfth Language Resources and Evaluation Conference, 2020, p. 1449–1458, Marseille, França. European Language Resources Association.
LUZ DE ARAÚJO, P. H.; CAMPOS, T.; OLIVEIRA, R. R. R.; STAUFFER, M. COUTO, S. BERMEJO, P. LeNER-Br: A Dataset for Named Entity Recognition in Brazilian Legal Text. In: Villavicencio, A., et al. Computational Processing of the Portuguese Language. PROPOR 2018. Lecture Notes in Computer Science(), vol 11122. Springer, Cham. doi: https://doi.org/10.1007/978-3-319-99722-3_32.
MAIA FILHO, M. S.; JUNQUILHO, T. A. Projeto Victor: Perspectivas de Aplicação da Inteligência Artificial ao Direito. Revista de Direitos e Garantias Fundamentais, v. 19, n. 3, p. 218–237, 2018. doi: 10.18759/rdgf.v19i3.1587. Disponível em: https://sisbib.emnuvens.com.br/direitosegarantias/article/view/1587. Acesso em: 20 ago. 2024.
MARANHÃO, J. S. de A.; FLORÊNCIO, J. A.; ALMADA, M. Inteligência artificial aplicada ao direito e o direito da inteligência artificial. Suprema - Revista de Estudos Constitucionais, Distrito Federal, Brasil, v. 1, n. 1, p. 154–180, 2021. doi: 10.53798/suprema.2021.v1.n1.a20. Disponível em: https://suprema.stf.jus.br/index.php/suprema/article/view/20. Acesso em: 20 ago. 2024.
MARTINS, V. S.; SILVA, C. D.. Text Classification in Law Area: a Systematic Review. In: SYMPOSIUM ON KNOWLEDGE DISCOVERY, MINING AND LEARNING (KDMILE), 9. , 2021, Rio de Janeiro. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021. p. 33-40. ISSN 2763-8944. doi: https://doi.org/10.5753/kdmile.2021.17458.
MENEZES NETO, E. J. de. Inteligência Artificial e Eficiência do Judiciário: Uso de Análise Preditiva em Conciliações, Sentenças e Acórdãos no Tribunal Regional do Trabalho da 1ª Região. Relatório Final. Natal, Rio Grande do Norte: UFRN - Universidade Federal do Rio Grande do Norte, 2022.
NOGUTI, M. Y.; VELLASQUES, E.; OLIVEIRA, L. S. Legal Document Classification: An Application to Law Area Prediction of Petitions to Public Prosecution Service, 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 2020, p. 1-8, doi: 10.1109/IJCNN48605.2020.9207211.*
PINTO, L. A. S. .; ARAÚJO, I. A. F. .; SANTANA JÚNIOR, O. V. de . Transformando o aprendizado: uma proposta de um bot educacional para auxiliar o professor - RN. Revista de Casos e Consultoria, v. 15, n. 1, p. e33870, 2024.
SPOLAOR, N.; LEE, H. D.; TAKAKI, W. S. R.; ENSINA, L. A.; COY, C. S. R.; WU, F. C. A systematic review on content-based video retrieval. Engineering Applications of Artificial Intelligence, v. 90, 2020, p. 103557. ISSN 0952-1976, doi:https://doi.org/10.1016/j.engappai.2020.103557.
VASCONCELOS, R. C.; SOUZA, M. A.; PIMENTEL, M. d. G. C. Justiça 4.0: um Panorama das Tecnologias e Soluções Aplicadas ao Poder Judiciário Brasileiro. SBC, v. 11, n. 3, 2020, p. 251–265.
VIRTUCIO, M. B. L.; ABONITA, J. K. C.; AVIÑANTE, R.; ABOROT, J. Predicting Decisions of the Philippine Supreme Court Using Natural Language Processing and Machine Learning, 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japão, 2018, p. 130-135, doi: 10.1109/COMPSAC.2018.10348.
WEI, F.; QIN, H.; YE, S.; ZHAO, H. Empirical Study of Deep Learning for Text Classification in Legal Document Review, 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, EUA, 2018, p. 3317-3320, doi: 10.1109/BigData.2018.8622157.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Filipe Machado da Costa Barros, Cleison Daniel Silva, Igor Rosberg de Medeiros Silva, Victor Simões Martins, Antônio Jhoseph Silva de Araújo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.