Natural Language Processing as a support tool in legal documents: a systematic review

Authors

Keywords:

Natural language processing; Court documents; Legal application.

Abstract

The burden of court cases has been increasing more and more, directly interfering with the performance of activities in the courts. We started looking for aid in artificial intelligence, through the use of document processing tools and techniques, promoting a significant change in the way legal activities are carried out. In this sense, a sistematic review was conduced, where Google Scholar, Portal de periódicos Capes, Science Direct - Elsevier and IEEE Xplore were consulted. The publications were obtained in order to answer 4 questions: (1) What are the most relevant scientific publications related to the application of NLP in legal documentation for the period from 2017 to 2022; (2) which NLP's techniques and tools were applied in dealing with documents in the legal domain; (3) the performance obtained when applying NLP in new documents of the Brazilian legal scope; (4) which legal databases exist in the Brazilian context have some pre-processing that helps the NLP. The literature recommends the use of deep learning algorithms to solve problems involving NLP, where their application, combined with embedding text on specific domain techniques, greatly improves the generated models.

Downloads

Download data is not yet available.

References

BARROS, F. M. C.; SILVA, C. D.; SILVA, I. R. M.; MARTINS, V. S.; ARAÚJO, A. J. S. Machine Learning Algorithms Applied on Classification of Processes for Conciliation on Brazilian Labour Judiciary. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 20., 2023, Belo Horizonte/MG. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023. p. 389-402. ISSN 2763-9061. doi: https://doi.org/10.5753/eniac.2023.234189.

CHAU, C.-N.; NGUYEN, T.-S.; NGUYEN, L.-M. VNLawBERT: A Vietnamese Legal Answer Selection Approach Using BERT Language Model. 2020 7th NAFOSTED Conference on Information and Computer Science (NICS), Ho Chi Minh City, Vietnam, 2020, p. 298-301, doi: 10.1109/NICS51282.2020.9335906.

CLAVIÉ, B.; GHEEWALA, A.; BRITON, P.; ALPHONSUS, M.; LAABIYAD, R.; PICCOLI, F. LegaLMFiT: Efficient Short Legal Text Classification with LSTM Language Model Pre-Training. arXiv preprint arXiv:2109.00993, 2001. doi: https://doi.org/10.48550/arXiv.2109.00993

CORREIA, F. A.; ALMEIDA, A. A. A.; NUNES, J. L.; SANTOS, K. G.; HARTMANN, I. A.; SILVA, F. A.; LOPES, H. Fine-grained legal entity annotation: A case study on the Brazilian Supreme Court. Information Processing & Management, v. 59, n. 1, 2022, p. 102794. ISSN 0306-4573, doi: https://doi.org/10.1016/j.ipm.2021.102794.

DE OLIVEIRA, R. S.; NASCIMENTO, E. G. S. Brazilian Court Documents Clustered by Similarity Together Using Natural Language Processing Approaches with Transformers. arXiv preprint arXiv:2204.07182, 2022. doi: 10.48550/arXiv.2204.07182

HSIEH, H.-P.; JIANG, J.; YANG, T.-H.; Hu, R.; WU, C.-L. Predicting the success of mediation requests using case properties and textual information for reducing the burden on the court. ACM Journals, v. 2, n. 4, 2022, p. 1–18. Nova York, NY, EUA. doi: https://doi.org/10.1145/3469233*

LUZ DE ARAÚJO, P. H.; CAMPOS, T. Topic Modelling Brazilian Supreme Court Lawsuits. 33rd International Conference on Legal Knowledge and Information Systems (JURIX 2020), v. 334, 2020, p. 113–122. Praga, República Tcheca. doi: http://dx.doi.org/10.3233/FAIA200855.

LUZ DE ARAÚJO, P. H.; CAMPOS, T.; BRAZ, F. A.; SILVA, N. C. VICTOR: a Dataset for Brazilian Legal Documents Classification. In Proceedings of the Twelfth Language Resources and Evaluation Conference, 2020, p. 1449–1458, Marseille, França. European Language Resources Association.

LUZ DE ARAÚJO, P. H.; CAMPOS, T.; OLIVEIRA, R. R. R.; STAUFFER, M. COUTO, S. BERMEJO, P. LeNER-Br: A Dataset for Named Entity Recognition in Brazilian Legal Text. In: Villavicencio, A., et al. Computational Processing of the Portuguese Language. PROPOR 2018. Lecture Notes in Computer Science(), vol 11122. Springer, Cham. doi: https://doi.org/10.1007/978-3-319-99722-3_32.

MAIA FILHO, M. S.; JUNQUILHO, T. A. Projeto Victor: Perspectivas de Aplicação da Inteligência Artificial ao Direito. Revista de Direitos e Garantias Fundamentais, v. 19, n. 3, p. 218–237, 2018. doi: 10.18759/rdgf.v19i3.1587. Disponível em: https://sisbib.emnuvens.com.br/direitosegarantias/article/view/1587. Acesso em: 20 ago. 2024.

MARANHÃO, J. S. de A.; FLORÊNCIO, J. A.; ALMADA, M. Inteligência artificial aplicada ao direito e o direito da inteligência artificial. Suprema - Revista de Estudos Constitucionais, Distrito Federal, Brasil, v. 1, n. 1, p. 154–180, 2021. doi: 10.53798/suprema.2021.v1.n1.a20. Disponível em: https://suprema.stf.jus.br/index.php/suprema/article/view/20. Acesso em: 20 ago. 2024.

MARTINS, V. S.; SILVA, C. D.. Text Classification in Law Area: a Systematic Review. In: SYMPOSIUM ON KNOWLEDGE DISCOVERY, MINING AND LEARNING (KDMILE), 9. , 2021, Rio de Janeiro. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021. p. 33-40. ISSN 2763-8944. doi: https://doi.org/10.5753/kdmile.2021.17458.

MENEZES NETO, E. J. de. Inteligência Artificial e Eficiência do Judiciário: Uso de Análise Preditiva em Conciliações, Sentenças e Acórdãos no Tribunal Regional do Trabalho da 1ª Região. Relatório Final. Natal, Rio Grande do Norte: UFRN - Universidade Federal do Rio Grande do Norte, 2022.

NOGUTI, M. Y.; VELLASQUES, E.; OLIVEIRA, L. S. Legal Document Classification: An Application to Law Area Prediction of Petitions to Public Prosecution Service, 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 2020, p. 1-8, doi: 10.1109/IJCNN48605.2020.9207211.*

PINTO, L. A. S. .; ARAÚJO, I. A. F. .; SANTANA JÚNIOR, O. V. de . Transformando o aprendizado: uma proposta de um bot educacional para auxiliar o professor - RN. Revista de Casos e Consultoria, v. 15, n. 1, p. e33870, 2024.

SPOLAOR, N.; LEE, H. D.; TAKAKI, W. S. R.; ENSINA, L. A.; COY, C. S. R.; WU, F. C. A systematic review on content-based video retrieval. Engineering Applications of Artificial Intelligence, v. 90, 2020, p. 103557. ISSN 0952-1976, doi:https://doi.org/10.1016/j.engappai.2020.103557.

VASCONCELOS, R. C.; SOUZA, M. A.; PIMENTEL, M. d. G. C. Justiça 4.0: um Panorama das Tecnologias e Soluções Aplicadas ao Poder Judiciário Brasileiro. SBC, v. 11, n. 3, 2020, p. 251–265.

VIRTUCIO, M. B. L.; ABONITA, J. K. C.; AVIÑANTE, R.; ABOROT, J. Predicting Decisions of the Philippine Supreme Court Using Natural Language Processing and Machine Learning, 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japão, 2018, p. 130-135, doi: 10.1109/COMPSAC.2018.10348.

WEI, F.; QIN, H.; YE, S.; ZHAO, H. Empirical Study of Deep Learning for Text Classification in Legal Document Review, 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, EUA, 2018, p. 3317-3320, doi: 10.1109/BigData.2018.8622157.

Downloads

Published

21-08-2024

How to Cite

BARROS, F. M. da C.; SILVA, C. D. .; SILVA, I. R. de M. .; MARTINS, V. S. .; ARAÚJO, A. J. S. de . Natural Language Processing as a support tool in legal documents: a systematic review. Revista de Casos e Consultoria, [S. l.], v. 15, n. 1, p. e36701, 2024. Disponível em: https://periodicos.ufrn.br/casoseconsultoria/article/view/36701. Acesso em: 21 nov. 2024.

Issue

Section

Consultancy, Technology, Innovation, and Entrepreneurship