Potential impacts of artificial intelligence for management accounting in the perception of professionals in the field
DOI:
https://doi.org/10.21680/2176-9036.2025v17n2ID40767Palavras-chave:
Management Accounting, Artificial Intelligence, Machine Learning, Deep Learning, Process Mining.Resumo
Purpose: The objective of this research is to verify the potential impacts that Artificial Intelligence (AI) can have within the field of Management Accounting (MA) in the perception of professionals in the field.
Methodology: The research is exploratory-descriptive and qualitative in nature, classified as a survey, an appropriate strategy for analyzing facts and descriptions (Martins & Theóphilo, 2009). Data collection took place through semi-structured interviews with seven professionals considered experts in the areas of study. The data was analyzed using content analysis.
Results: The results show that some AI functions could potentially interfere with the business and converge with previous investigations, namely: process mining and machine learning. Among the activities that facilitate the insertion of artificial intelligence are budget preparation, custodial management (especially task processes) and preparation and use of management relationships. Another aspect addressed is the potential of technology and expanded as the variables used for analysis, dealing with a large quantity of data, in addition to factors such as time reduction, quality increase, greater process agility and error reduction. Furthermore, let us discuss the impacts on professional training in the face of the adoption of new technologies.
Contributions of the Study: The main contribution of this research is the discussion about which MA practices can be effectively affected by AI, especially considering that it is not possible to guarantee the real impact of AI on management practices. Additionally, the opinion of experts, as people who experience or have experienced the topic closely, makes tangible knowledge that has been limited to the theoretical field in most of the research consulted during the execution of this study.
Downloads
Referências
AICPA, & CIMA. (2023). Princípios Globais da Contabilidade Gerencial: Melhorando as decisões e construindo organizações de sucesso. 2. ed. Chartered Global Management Accountant.
Alpaydin, E. (2020). Introduction to machine learning. 4. ed. Massachussets: MIT press.
Al-Emran, M., Malik, S.I., & Al-Kabi, M.N. (2020). A Survey of Internet of Things (IoT) in Education: Opportunities and Challenges. In: Hassanien A., Bhatnagar R., Khalifa N., Taha M. (eds) Toward Social Internet of Things (SIoT): Enabling Technologies, Architectures and Applications. Studies in Computational Intelligence, vol 846, doi: 10.1007/978-3-030-24513-9_12.
Angonese, R., & Lavarda, C. E. F. (2017). Fatores para a implementação da mudança em sistemas de Contabilidade Gerencial. Enfoque: Reflexão Contábil, 36(1), p.p. 139-154.
Atanasovski, A., & Tocev, T. (2022). Research Trends in Disruptive Technologies for Accounting of The Future †- A Bibliometric Analysis. Journal of Accounting and Management Information Systems, 21(2), June.
Atrill, P., & Mclaney, E. (2017). Contabilidade Gerencial para tomada de decisão. São Paulo: Saraiva.
Bardin, L. (2011). Análise de conteúdo. 2nd ed. São Paulo: Editora 70.
Chandrasekaran N., Somanah R., Rughoo D., Dreepaul R.K., Cunden T.S.M., & Demkah M. (2019). Digital Transformation from Leveraging Blockchain Technology, Artificial Intelligence, Machine Learning and Deep Learning. In: Satapathy S., Bhateja V., Somanah R., Yang XS., Senkerik R. (eds) Information Systems Design and Intelligent Applications. Advances in Intelligent Systems and Computing, 863, doi: 10.1007/978-981-13-3338-5_25.
Chen, Y. (2017). Integrated and Intelligent Manufacturing: Perspectives and Enablers. Engineering, 3(5), p.p. 588-595.
Dávila, A. (2019). Emerging Themes in Management Accounting and Control Research. Revista de Contabilidad Spanish Accounting Review, 22(1), p.p. 1-5.
De Lima, D., & Macedo, M. (2018). Controladoria: A relevância da tecnologia da informação na qualidade dos relatórios contábeis. Revista de Psicologia, 12(42), p.p. 688-702.
De Mendonça, A., Rodrigues, B., Aragão, C., & Del Vecchio, R. (2018). Inteligência artificial – recursos humanos frente as novas tecnologias, posturas e atribuições. Revista Contribuciones a la Economía, 1(1), p.p. 1-20.
Deng, L., & Yu, D. (2014). Deep Learning: Methods and Applications. Foundations and Trends® in Signal Processing, 7(3-4).
Duarte, R. D. (2018). Os impactos da inteligência artificial na contabilidade e no papel do contador 2.0: Já não é novidade que a inteligência artificial (AI, sigla em inglês) está evoluindo. Disponível em: https://biracontabilidade.cnt.br/noticias/artigos/2018/01/10/os-impactos-da-inteligencia-artificial-na-contabilidade-e-no-papel-do-contador-2-0.html.
Fontelles, M., Simões, M., Farias, S., & Fontelles, R. (2009). Metodologia da pesquisa científica: diretrizes para a elaboração de um protocolo de pesquisa. Revista paraense de medicina, 23(3), p.p. 1-8.
Guo, X. (2019). Research on the Transition from Financial Accounting to Management Accounting under the Background of Artificial Intelligence. Journal of Physics: Conference Series, 1345(4).
Gusc, J., Bosma, P., Jarka, S., & Biernat-Jarka, A. (2022). The Big Data, Artificial Intelligence, and Blockchain in True Cost Accounting for Energy Transition in Europe. Energies, 15, doi: 10.3390/en15031089.
He, L. (2020). Review and Prospect of China Management Accounting in the Information Age. Journal of Physics: Conference Series, 1607, doi: 10.1088/1742-6596/1607/1/012125.
Korobeynikova, O., Korobeynikov, D., Popova, L., Chekrygina, T., & Shemet, E. (2020). Artificial intelligence for digitalization of management accounting of agricultural organizations. IOP Conf. Series: Earth and Environmental Science, 699, doi:10.1088/1755-1315/699/1/012049.
Korhonen, T., Selos, E., Laine, T., & Suomala, P. (2021). Exploring the programmability of
management accounting work for increasing automation: an interventionist case study,
Accounting, Auditing & Accountability Journal, 34(2), 253-280. https://doi.org/10.1108/AAAJ-12-2016-2809
Kruskopf, S., Lobbas, C., Meinander, H., Söderling, K., Martikainen, M., & Lehner, O. (2019). Digital Accounting: Opportunities, Threats and the Human Factor. Journal of Finance and Risk Perspectives, 8, p.p. 1-15.
Lee, D., & Yoon, S.N. (2020) Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges. International Journal of Environmental Research and Public Health, 18, Article No. 271.
https://doi.org/10.3390/ijerph18010271
Li, C., Haohao, S., & Ming, F. (2019). Research on the Impact of Artificial Intelligence Technology on Accounting. Journal of Physics: Conference Series, 1486, doi:10.1088/1742-6596/1486/3/032042
Liu, Z., Lin, Y., & Sun, M. (2020). World Knowledge Representation. In: Representation Learning for Natural Language Processing. Singapore: Springer.
Losbichler, H., & Lehner, O. (2021). Limits of artificial intelligence in controlling and the ways forward: a call for future accounting research. Journal of Applied Accounting Research, 22(2), p.p. 365-382, doi: 10.1108/JAAR-10-2020-0207.
Madhavi, M., & Vijay, D. (2020). Artificial Intelligence in Business Decision Making. Institute of Scholars. Disponível em: https://ssrn.com/abstract=3668836.
Marconi, M. A., & Lakatos, E. M. (2003). Fundamentos de Metodologia Científica. 5. ed. São Paulo: Atlas.
Martins, G., & Theóphilo, C. R. (2009). Metodologia da Investigação Científica para Ciências Sociais Aplicadas. 2. ed. São Paulo: Atlas.
Open AI Plataform (2024). Models. Disponível em: https://platform.openai.com/docs/models.
Qin, J., & Qin, Q. (2021). Cloud Platform for Enterprise Financial Budget Management Based on Artificial Intelligence. Wireless Communications and Mobile Computing, doi: 10.1155/2021/8038433.
Qiu, J. (2020). Analysis of Human Interactive Accounting Management Information Systems Based on Artificial Intelligence. Journal of Global Information Management, 30(7).
Rojas, E., Munoz-Gama, J., Sepúlveda, M., & Capurro, D. (2016). Process mining in healthcare: A literature review. Journal of Biomedical Informatics, 61, p.p. 224-236.
Samarghandi, H., Askarany, D., & Dehkordi, B. B. (2023). A Hybrid Method to Predict Human Action Actors in Accounting Information System. Journal of Risk and Financial Management, 16(1), doi: 10.3390/jrfm16010037.
Samuel, R., Cormier, G., Fascendini, S., Stubanas, C., & Yacko, K. (2018). Four it/is pillars for Artificial Intelligence Machine Learning/Deep Learning Applications. Issues in Information Systems, 19(2), p.p. 149-154.
Santos, E. K., & Konzen, J. (2020). A percepção dos escritórios de contabilidade do Vale do Paranhana/RS e de São Francisco de Paula/RS sobre a contabilidade digital. Revista Eletrônica do Curso de Ciências Contábeis, 9(2).
Schildt, H. (2016). Big data and organizational design – the brave new world of algorithmic management and computer augmented transparency. Innovation, 19(1), 23–30. https://doi.org/10.1080/14479338.2016.1252043
Sherif, K., & Mohsin, H. (2021); The effect of emergent technologies on accountant`s ethical
Blindness. The International Journal of Digital Accounting Research, 21, pp. 61-94.
Shi, Y. (2020). The Impact of Artificial Intelligence on the Accounting Industry. In: Xu, Z., Choo, KK., Dehghantanha, A., Parizi, R., Hammoudeh, M. (eds) Cyber Security Intelligence and Analytics. CSIA 2019. Advances in Intelligent Systems and Computing, 928. Springer, Cham. https://doi.org/10.1007/978-3-030-15235-2_129
Silva, M. P. (2019). Impacto das novas tecnologias de informação e análise de dados nas empresas e nos profissionais de controladoria e finanças: possíveis mudanças de comportamento dos profissionais de controladoria e finanças devido às novas tecnologias de informação. (Tese de Doutorado). Fundação Getulio Vargas.
Stodder, D. (2018). BI and Analytics in the Age of AI and Big Data: Transforming Data With Intelligence. Best Practices Report, Q4.
Sun, J. (2021). Research on Artificial Intelligence, New Retail and Financial Transformation. 2nd International Conference on E-Commerce and Internet Technology (ECIT), Hangzhou, China, 2021, pp. 109-112. doi: 10.1109/ECIT52743.2021.00031.
Wang, P. (2019). On Defining Artificial Intelligence. Journal of Artificial General Intelligence, 10(2), p.p. 1-37.
Zhang, Y., Xiong, F., Xie, Y., Fan, X., & Gu, H. (2020). The Impact of Artificial Intelligence and Blockchain on the Accounting Profession. IEEE Access, 8, 110461-110477. https://doi.org/10.1109/ACCESS.2020.3000505
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 REVISTA AMBIENTE CONTÁBIL - Universidade Federal do Rio Grande do Norte - ISSN 2176-9036

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
Os autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Comomns Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
Os autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Os autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.
A Revista Ambiente Contábil utiliza uma licença Creative Commons CC-BY-NC-ND (Atribuição-NãoComercial – SemDerivações 4.0). Isso significa que os artigos podem ser compartilhados e que a Revista Ambiente Contábil não pode revogar estes direitos desde que se respeitem os termos da licença:
Atribuição: Deve-se dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas.
Não Comercial: Não se pode usar o material para fins comerciais.
Sem Derivações: Se for remixar, transformar ou criar a partir do material, não se pode distribuir o material modificado.

Creative Commons - Atribuição-NãoComercial-SemDerivações 4.0 Internacional
Português (Brasil)
English
Español (España)