Potencial osteogénico de células madre mesenquimales sobreexpresión de proteína morfogenética ósea 9

Autores/as

Palabras clave:

Regeneración, Terapia celular, Células madre mesenquimales, Proteína morfogenética ósea

Resumen

El tejido óseo está compuesto por células capaces de reparar, remodelar y regenerar tejidos, pero que, en grandes proporciones, no presentan resultados satisfactorios. Así, se han evaluado nuevas terapias basadas en la medicina regenerativa con células madre para solucionar el problema. El presente estudio busca evaluar, a través de una revisión integrativa de la literatura, el potencial de formación ósea de la sobreexpresión de la proteína morfogenética ósea 9 (BMP-9) en células madre mesenquimales (MSC). Se trata de un estudio exploratorio, cualitativo y descriptivo. Para su idealización, los descriptores registrados en el DeCS/MeSH “regeneración”, “células madre mesenquimales”, “proteína morfogenética ósea 9” y “factor de diferenciación de crecimiento 2” se vincularon mediante los operadores booleanos “y” y “o” y se aplicaron a las bases de datos de PubMed/Medline, Scielo, Bireme y Google Scholar. De los 142 estudios ubicados en un marco temporal de 10 años (2012 a 2022), 12 artículos publicados en inglés y portugués fueron incluidos en la muestra final. Entre los resultados, estudios in vitro e in vivo muestran que la terapia es prometedora en el proceso de formación de tejido óseo. BMP-9 y CTM aumentaron la potencia de diferenciación de las células en el tejido, lo que permitió la reparación de defectos óseos extensos. Las herramientas tecnológicas de edición de genes han sugerido grandes posibilidades para revolucionar la ciencia, ya que son guías para la escisión del ADN. Son necesarios futuros estudios con enfoque en la terapia celular, para que se profundice científicamente la aplicabilidad de esta técnica y pueda avanzar posteriormente a su uso clínico en las ciencias de la salud.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

CARREIRA, Ana Claudia Oliveira et al. Bone morphogenetic proteins: promising molecules for bone healing, bioengineering, and regenerative medicine. Vitamins & Hormones, v. 99, p. 293-322, 2015.

CHEN, Qiuman et al. Special AT‐rich sequence‐binding protein 2 (Satb2) synergizes with Bmp9 and is essential for osteo/odontogenic differentiation of mouse incisor mesenchymal stem cells. Cell proliferation, v. 54, n. 4, p. e13016, 2021.

CHENARD, Kristofer E. et al. Bone morphogenetic proteins in craniofacial surgery: current techniques, clinical experiences, and the future of personalized stem cell therapy. Journal of Biomedicine and Biotechnology, v. 2012, 2012.

DENG, ZH et al. Proteínas morfogenéticas ósseas para regeneração da cartilagem articular. Osteoartrite e cartilagem, v. 26, n. 9, pág. 1153-1161, 2018.

DUMANIAN, Zari P. et al. Repair of critical sized cranial defects with BMP9-transduced calvarial cells delivered in a thermoresponsive scaffold. PLoS One, v. 12, n. 3, p. e0172327, 2017.

ERCOLE, Flávia Falci; MELO, Laís Samara de; ALCOFORADO, Carla Lúcia Goulart Constant. Revisão integrativa versus revisão sistemática. Revista Mineira de Enfermagem, v. 18, n. 1, p. 9-12, 2014.

FREITAS, Gileade P. et al. Cell therapy: effect of locally injected mesenchymal stromal cells derived from bone marrow or adipose tissue on bone regeneration of rat calvarial defects. Scientific reports, v. 9, n. 1, p. 1-13, 2019.

GALVÃO, Taís Freire; PANSANI, Thais de Souza Andrade; HARRAD, David. Principais itens para relatar Revisões sistemáticas e Meta-análises: A recomendação PRISMA. Epidemiologia e serviços de saúde, v. 24, p. 335-342, 2015.

HUANG, Xia et al. Dentinogenesis and tooth-alveolar bone complex defects in BMP9/GDF2 knockout mice. Stem Cells and Development, v. 28, n. 10, p. 683-694, 2019.

KHORSAND, Behnoush et al. A comparative study of the bone regenerative effect of chemically modified RNA encoding BMP-2 or BMP-9. The AAPS journal, v. 19, n. 2, p. 438-446, 2017.

LIU, Ziming et al. Bone morphogenetic protein 9 enhances osteogenic and angiogenic responses of human amniotic mesenchymal stem cells cocultured with umbilical vein endothelial cells through the PI3K/AKT/m-TOR signaling pathway. Aging (Albany NY), v. 13, n. 22, p. 24829, 2021.

LUO, Wenping et al. BMP9‐initiated osteogenic/odontogenic differentiation of mouse tooth germ mesenchymal cells (TGMCS) requires Wnt/β‐catenin signalling activity. Journal of Cellular and Molecular Medicine, v. 25, n. 5, p. 2666-2678, 2021.

MAY, Rahel Deborah et al. Application of cytokines of the bone morphogenetic protein (BMP) family in spinal fusion-effects on the bone, intervertebral disc and mesenchymal stromal cells. Current stem cell research & therapy, v. 14, n. 8, p. 618, 2019.

MENDES, Karina Dal Sasso; SILVEIRA, Renata Cristina de Campos Pereira; GALVÃO, Cristina Maria. Revisão integrativa: método de pesquisa para a incorporação de evidências na saúde e na enfermagem. Texto & contexto-enfermagem, v. 17, p. 758-764, 2008.

PRANSKUNAS, Mindaugas; GALINDO-MORENO, Pablo; PADIAL-MOLINA, Miguel. Extraction socket preservation using growth factors and stem cells: A systematic review. Journal of oral & maxillofacial research, v. 10, n. 3, 2019.

QUILES, Georgia K. et al. Efeito da sobre-expressão de bmp9 por crispr-cas9 na diferenciação osteoblástica de células-tronco mesenquimais. In: REUNIÃO ANUAL DA SBPC, 73., 2021. Anais eletrônicos [...] São Paulo: Sociedade Brasileira Para o Progresso da Ciência, 2021. p. 01 – 02. Disponível em: https://reunioes.sbpcnet.org.br/73RA/inscritos/resumos/10265_1d6baf65e0b240ce177cf70da146c8dc8.pdf. Acesso em: 10 ago. 2022.

REDMAN, Melody et al. What is CRISPR/Cas9?. Archives of Disease in Childhood-Education and Practice, v. 101, n. 4, p. 213-215, 2016.

REN, Xiaoyan et al. Nanoparticulate mineralized collagen scaffolds and BMP‐9 induce a long‐term bone cartilage construct in human mesenchymal stem cells. Advanced healthcare materials, v. 5, n. 14, p. 1821-1830, 2016.

RODRÍGUEZ-MERCHÁN, Emerito Carlos. A review of recent developments in the molecular mechanisms of bone healing. International Journal of Molecular Sciences, v. 22, n. 2, p. 767, 2021.

RUAN, Wendong et al. Effect of BMPs and Wnt3a co-expression on the osteogenetic capacity of osteoblasts. Molecular Medicine Reports, v. 14, n. 5, p. 4328-4334, 2016.

SANTOS, Cristina Mamédio da Costa; PIMENTA, Cibele Andrucioli de Mattos; NOBRE, Moacyr Roberto Cuce. A estratégia PICO para a construção da pergunta de pesquisa e busca de evidências. Revista Latino-Americana de Enfermagem, v. 15, p. 508-511, 2007.

SANTOS, Isabella Cristine dos et al. Células-tronco mesenquimais sobre-expressando proteína morfogenética óssea 9 por CRISPR-CAS9 aumentam o reparo de defeitos ósseos críticos. Anais da Faculdade de Odontologia de Ribeirão Preto da Universidade de São Paulo, v. 36, p. 38, 2020.

SCARFÌ, Sonia. Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair. World journal of stem cells, v. 8, n. 1, p. 1, 2016.

SHEIKH, Zeeshan et al. Bone regeneration using bone morphogenetic proteins and various biomaterial carriers. Materials, v. 8, n. 4, p. 1778-1816, 2015.

SHUI, Wei et al. Characterization of scaffold carriers for BMP9‐transduced osteoblastic progenitor cells in bone regeneration. Journal of Biomedical Materials Research Part A, v. 102, n. 10, p. 3429-3438, 2014.

SOUZA, Marcela Tavares de; SILVA, Michelly Dias da; CARVALHO, Rachel de. Revisão integrativa: o que é e como fazer. Einstein (São Paulo), v. 8, p. 102-106, 2010.

TEVEN, Chad M. et al. Bone morphogenetic protein-9 effectively induces osteogenic differentiation of reversibly immortalized calvarial mesenchymal progenitor cells. Genes & Diseases, v. 2, n. 3, p. 268-275, 2015.

VHORA, Imran et al. Colloidally stable small unilamellar stearyl amine lipoplexes for effective BMP-9 gene delivery to stem cells for osteogenic differentiation. AAPS PharmSciTech, v. 19, n. 8, p. 3550-3560, 2018.

VHORA, Imran et al. Lipid-nucleic acid nanoparticles of novel ionizable lipids for systemic BMP-9 gene delivery to bone-marrow mesenchymal stem cells for osteoinduction. International journal of pharmaceutics, v. 563, p. 324-336, 2019.

WANG, Yi et al. Noggin resistance contributes to the potent osteogenic capability of BMP9 in mesenchymal stem cells. Journal of Orthopaedic Research, v. 31, n. 11, p. 1796-1803, 2013.

ZHANG, Bo et al. Leptin potentiates BMP9-induced osteogenic differentiation of mesenchymal stem cells through the activation of JAK/STAT signaling. Stem cells and development, v. 29, n. 8, p. 498-510, 2020.

ZHANG, Ran et al. Acceleration of bone regeneration in critical-size defect using BMP-9-loaded nHA/ColI/MWCNTs scaffolds seeded with bone marrow mesenchymal stem cells. BioMed research international, v. 2019, 2019.

ZHANG, Wei et al. Synergistic effects of BMP9 and miR-548d-5p on promoting osteogenic differentiation of mesenchymal stem cells. BioMed Research International, v. 2015, 2015.

ZHOU, Cheng et al. A Composite Tissue Engineered Bone Material Consisting of Bone Mesenchymal Stem Cells, Bone Morphogenetic Protein 9 (BMP9) Gene Lentiviral Vector, and P3HB4HB Thermogel (BMSCs-LV-BMP9-P3HB4HB) Repairs Calvarial Skull Defects in Rats by Expression of Osteogenic Factors. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, v. 26, p. e924666-1, 2020.

Publicado

24-04-2023

Cómo citar

SOUSA, Z. da S. .; MOREIRA, T. P. C. .; CHAVES JÚNIOR, P. M. .; MATIAS, A. C. da S. .; SANTOS, V. P. dos .; MATEUS, M. M. .; MARQUES, D. L. .; SILVA, S. E. da; ALVES, J. R. de S.; SÁ, B. D. .; ANDRADE, M. C. . Potencial osteogénico de células madre mesenquimales sobreexpresión de proteína morfogenética ósea 9. Revista de Casos e Consultoria, [S. l.], v. 14, n. 1, p. e30285, 2023. Disponível em: https://periodicos.ufrn.br/casoseconsultoria/article/view/30285. Acesso em: 3 jul. 2024.

Número

Sección

Ciências da Saúde