Possibility, imagination and conception [Possibilidade, imaginação e concepção]
DOI:
https://doi.org/10.21680/1983-2109.2016v23n40ID8403Keywords:
Chiligon, Quanton, Contradiction, Imaginary numbersAbstract
In this paper we investigate the relations between possibility, imagination and conception. We develop a theory according to which these three notions are compatible but independent. This means in particular that none of these notions reduces to another one and that there are things which are: (1) imaginable but neither possible nor conceivable; (2) conceivable but neither possible nor imaginable; (3) possible but neither imaginable nor conceivable. We first explain our methodology: structuralism, equilibrium between norm and description, prototypical examples. And then we proceed.
Downloads
References
BAZHANOV, V. Nicolai Vasiliev. In: FIESER, J.; DOWDEN, B. (Ed.) Internet Encyclopedia of Philosophy, 2016. (forthcoming.)
BECKER ARENHART, J. R. Liberating Paraconsistency from Contradiction. Logica Universalis, v. 9, issue 4, 2015, p. 523-544.
BEZIAU, J.-Y. L’holomouvement chez David Bohm. (Master thesis, directed by Barnard d’Espagnat, University Paris 1 – Panthéon Sorbonne). Paris, 1987.
BEZIAU, J.-Y. D’une caverne à l’autre. (DEA thesis, directed by Sarah Kofman, University Paris 1 – Panthéon Sorbonne). Paris, 1988.
BEZIAU, J.-Y. The new rising of the square of opposition. In: BEZIAU, J.-Y.; JACQUETTE, D. (Ed.). Around and beyond the square of opposition. Birkhäuser: Basel, 2012. p. 6-24.
BEZIAU, J.-Y. The power of the hexagon. Logica Universalis, v. 6, issue 1, 2012, p. 1-43.
BEZIAU, J.-Y. La puissance du symbole. In: BEZIAU, J.-Y. (Ed.). La pointure du symbole. Paris: Petra, 2014. p. 9-34.
BEZIAU, J.-Y. Round squares are no contradictions (tutorial on negation, contradiction and ppposition). In: BEZIAU, J.-Y.; CHAKRABORTY, M.; DUTTA, S. (Ed.). New directions in paraconsistent logic. New Delhi: Springer, 2015. p. 39-55.
BEZIAU, J.-Y. Le possible et l’impossible: au-delà de la dichotomie. In: CONGRÈS DE L'ASPLF, 35 (Rabat, Maroc, 26-30 Août, 2014). Actes. Paris: Vrin, 2016. p. 53-74
BEZIAU, J.-Y. The contingency of possibility. Principia, v. 20, 2016. (forthcoming.)
BEZIAU, J.-Y. Is modern logic non-Aristotelian? In: ZAITSEV, D. (Ed.), Nikolai Vasiliev's logical legacy and modern logic. Dordrecht: Springer, 2016.
BEZIAU, J.-Y. Disentangling contradiction form contrariety via incompatibility. Logica Universalis, v. 10, issue 2-3, 2016, p. 157-170.
BEZIAU, J.-Y. Prototypical conceptual analysis. (forthcoming.)
BEZIAU, J.-Y.; PAYETTE, G. (Ed.). Special issue of Logica Universalis on the square of opposition, v. 2, issue 1, 2008.
BEZIAU, J.-Y.; PAYETTE, G. (Ed.). The square of opposition: a general framework for cognition. Bern: Peter Lang, 2012.
BEZIAU, J.-Y.; JACQUETTE, D. (Ed.). Around and beyond the square of opposition. Birkhäuser: Basel, 2012.
BEZIAU, J.-Y.; READ, S. (Ed.). Special issue of History and Philosophy of Logic on the history of the square of opposition, v. 35, issue 4, 2014.
BEZIAU, J.-Y.; KRAUSE, D.; BECKER ARENHART, J. R. (Ed.). Conceptual clarifications: tributes to Patrick Suppes (1922-2014). London: College Publications, 2015.
BEZIAU, J.-Y.; GAN-KRZYWOSZYNSKA, K. (Ed.). New dimensions of the square of opposition. Berlin: Philosophia, 2016.
BEZIAU, J.-Y.; BASTI, G. (Ed.). The square of opposition: a cornerstone of thought. Basel: Birkhäuser, 2016.
BEZIAU, J.-Y.; GIOVAGNOLI, R. (Ed.). Special issue of Logica Universalis on the square of opposition, v. 10, issue 2-3, 2016.
BLANCHÉ, R. Structures intellectuelles: essai sur l’organisation systématique des concepts. Paris: Vrin, 1966.
BOHM, D. Wholeness and the implicate order. London: Routledge, 1983.
BYRNE, A. Possibility and imagination. Philosophical perspectives. 21, 2007, p. 125-144.
BUNGE, M. Foundations of physics. New York: Springer, 1967.
CHALMERS, D. Does conceivability entails possibility? In: GENDLER, T. S.; HAWTHORNE, J. (Ed.). Conceivability and possibility. Oxford: Oxford University Press, 2002. p. 145-200.
CHOUDHURY, L.; CHAKRABORTY, M. H. Singular propositions, negation and the square of opposition. Logica Universalis, v. 10, issue 2-3, 2016, p. 215-231.
da COSTA, N. C. A. Sistemas formais inconsistentes. Curitiba: Universidade Federal do Paraná, 1963.
COSTA-LEITE, A. Logical properties of imagination. Abstracta, v. 6, n. 1, 2010, p. 103-116.
D’ESPAGNAT, B. Le réel voile: analyse des concepts quantiques. Paris: Fayard, 1994.
GENDLER, T. S.; HAWTHORNE, J. (Ed.). Conceivability and possibility. Oxford: Oxford University Press, 2002.
HUMBERSTONE, L. Modality. In: JACKSON, F. C.; SMITH, M. (Ed.). Oxford handbook of Contemporary Philosophy. Oxford: Oxford University Press, 2005. p. 534-614.
JASPERS, D. Logic and colour. Logica Universalis, v. 6, issue 1-2, 2012, p. 227-248.
KIND, A. Imagery and imagination. In: FIESER, J.; DOWDEN, B. (Ed.) Internet Encyclopedia of Philosophy, 2016.
< http://www.iep.utm.edu/imagery >.
JA?KOWSKI, S. A propositional calculus for inconsistent deductive systems. Logic and Logical Philosophy, 7, 1999, p. 35-56. (Original in Polish 1948.)
LACHANCE, G. Platonic contrariety (enantia): ancestor of the Aristotelian notion of contradiction (antiphasis)?. Logica Universalis, v. 10, issue 2-3, 2016, p. 143-156.
LÉVY-LEBLOND, J.-M.; BALIBAR, F. Quantique (Rudiments). Paris: Masson, 1997.
LIPSON, A. Escher’s “waterfall” in Lego. 2003.
< http://www.andrewlipson.com/escher/waterfall.html >.
MAGNANI, L. Violence hexagon – Moral Philosophy through drawing. Logica Universalis, v. 10, issue 2-3, 2016, p. 359-371.
NELSEN, R. B. Proofs without words: exercises in visual thinking. Washington: Mathematical Association of America, 1997 (Vol. I); 2000 (Vol. II).
NICHOLS, S. (Ed.). The architecture of imagination, Oxford: Oxford University Press, 2006.
MAXIMOV, D. Y. “N. A. Vasil’ev’s logical ideas and the categorical semantics of many–valued logic”. Logica Universalis, v. 10, issue 1, 2016, p. 21-43.
PARROCHIA, D.; NEUVILLE, P. Towards a general theory of classification, Basel: Birkhäuser, 2013.
SHIN, S.-J.; MOKTEFI, A. Visual reasoning with diagrams. Basel: Birkhäuser, 2013.
SUPPES, P.; BEZIAU, J.-Y. Semantic computation of truth based on associations already learned. Journal of Applied Logic, 2, 2004, p. 457-467.
TARSKI, A. The semantic conception of truth and the foundations of semantics. Philosophy and Phenomenological Research, 4, 1944, p. 341-376.
VAIDYA, A. The epistemology of modality. In: ZALTA, E. N. (Ed.). Stanford Encyclopedia of Philosophy. Stanford: Metaphysics Research Lab, 2007; rev. ed. 2015. < http://plato.stanford.edu/entries/modality-epistemology >.
YABLO, S. Is conceivability a guide to possibility? Philosophy and Phenomenological Research, 53, 1993, p. 1-42.
Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.