Risk assessment when granting credit to non-financial legal entities
DOI:
https://doi.org/10.21680/2176-9036.2024v16n2ID36718Palavras-chave:
Credit assessment for legal entities, default, credit score, rating score.Resumo
Purpose: This study aimed to verify risk assessment procedures when granting credit by a legal entity via financing in negotiations with its customers.
Methodology: A documentary approach was used, emphasizing qualitative analysis, during the experimental study conducted at an XYZ organization linked to information technology.
Results: They point out that the credit score and rating score, established through the evaluation stages, taking into account the company's history, documentation, guarantees, financial health, cash flow, indebtedness, corporate governance, and market prospects, enable the risk classification of their analyzed clients, ranging from AAA for the "alpha" client to D for the "beta" client. This result made it possible to deduce that credit assessment is appropriate automation in financing decisions for commercial activities, capable of promoting financial flexibility and commercial agility. Customer risk classification is therefore seen as a fundamental tool for improving XYZ's financial decisions, minimizing default risks, and guaranteeing the financial security of its commercial operations, resulting from establishing risk scores for both defaulting and non-defaulting companies.
Contributions of the Study: This study makes a relevant theoretical contribution to the field of research by highlighting the importance of validating the criteria used in granting financing, as well as the contextual factors that can affect decisions. The practical contribution of analyzing a non-financial institution under the pandemic context and how they minimize their default by establishing credit analysis mechanisms provides improvements and consequently greater security as lenders.
Downloads
Referências
Acharya, V. V., & Steffen, S. (2020). The Risk of Being a Fallen Angel and the Corporate Dash for Cash in the Midst of COVID. The Review of Corporate Finance Studies, 9(3), 430-471. doi: 10.1093/rcfs/cfaa013
Agência Brasil. (2022). Brazil registers 1,023 new cases and 66 deaths from covid-19 in 24 hours. Retrieved May 14, 2023, from https://agenciabrasil.ebc.com.br/saude/noticia/2022-10/brasil-registra-5986-novos-casos-de-covid-19-em-24-horas
Akkoç, S. (2012). An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish credit card data. European Journal of Operational Research, 222(1), 168-178. doi: 10.1016/j.ejor.2012.04.009
Altman, E. I. (1968). Financial ratios, discriminant analysis, and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589-609. doi: 10.1111/j.1540-6261.1968.tb00843.x
Annibal, C. A. Default in the Brazilian banking sector: an evaluation of its measures. Working Papers Series, 192. Brasília, DF: Central Bank of Brazil, 2009. Retrieved May 10, 2023, from https://ideas.repec.org/p/bcb/wpaper/192.html
BACEN - Central Bank of Brazil (2021). Monetary and Credit Statistics. Press release on 01/28/2021. Retrieved June 11, 2023, from https://www.bcb.gov.br/content/estatisticas/hist_estatisticasmonetariascredito/202101_Texto_de_estatisticas_monetarias_e_de_credito.pdf
BACEN - Central Bank of Brazil (2022). Monetary and Credit Statistics. Press release on 01/28/2022. Retrieved May 2, 2023, from https://www.bcb.gov.br/content/estatisticas/hist_estatisticasmonetariascredito/202201_Texto_de_estatisticas_monetarias_e_de_credito.pdf
Beck, T., & Keil, J. (2022). Have banks caught Corona? Effects of COVID on lending in the U.S. Journal of Corporate Finance, 72, 102160. doi: 10.1016/j.jcorpfin.2022.102160
Berger, A. N. et al. (2021). Is a friend in need a friend indeed? How relationship borrowers fare during the COVID-19 crisis, Working Papers 21-13, Federal Reserve Bank of Philadelphia.
Bianconi, M., Yoshino, J. A., & Machado de Sousa, M. O. (2013). BRIC and the U.S. financial crisis: An empirical investigation of stock and bond markets. Emerging Markets Review, 14, 76-109. doi: 10.1016/j.ememar.2012.11.002
Carvalho, K. W. et al. (2014). The importance of analyzing financial statements in granting credit. In: SEGET - XI Symposium on Excellence in Management and Technology, 2014, Resende/RJ. Proceedings of SEGET - XI Symposium on Excellence in Management and Technology.
CNC - National Confederation of Commerce (2022). Consumer debt and default survey. Brasília, DF. Retrieved June 11, 2023, from https://www.fecomercio.com.br/pesquisas/indice/peic
Dahooie, J. H., Hajiagha, S. H. R., Farazmehr, S., Zavadskas, E. K., & Antucheviciene, J. (2021). A novel dynamic credit risk evaluation method using data envelopment analysis with common weights and combination of multi-attribute decision-making methods. Computers & Operations Research, 129, 105223. doi: 10.1016/j.cor.2021.105223
Dekkers, R., de Boer, R., Gelsomino, L. M., de Goeij, C., Steeman, M., Zhou, Q., Sinclair, S., & Souter, V. (2020). Evaluating theoretical conceptualizations for supply chain and finance integration: A Scottish focus group. International Journal of Production Economics, 220, 107451. doi: 10.1016/j.ijpe.2019.07.024
Dinh, T. H. T., & Kleimeier, S. (2007). A credit scoring model for Vietnam's retail banking market. International Review of Financial Analysis, 16(5), 471-495. doi: 10.1016/j.irfa.2007.06.001
Dursun-de Neef, H. Ö., & Schandlbauer, A. (2022). COVID-19, bank deposits, and lending. Journal of Empirical Finance, 68, 20-33. doi: 10.1016/j.jempfin.2022.05.003
Gong, D., Jiang, T., & Lu, L. (2020). Pandemic and bank lending: Evidence from the 2009 H1N1 pandemic. Finance Research Letters, 39, 101627. doi: 10.1016/j.frl.2020.101627
Goodell, J. W. (2020). COVID-19 and finance: Agendas for future research. Finance Research Letters, 35, 101512. doi: 10.1016/j.frl.2020.101512
Gouvêa, M. A., Gonçalves, E. B., & Mantovani, D. M. N. (2015). Credit risk analysis with the application of logistic regression and neural networks. Contabilidade Vista & Revista, 24(4), 96-123.
Han, I., Chandler, J. S., & Liang, T.-P. (1996). The impact of measurement scale and correlation structure on classification performance of inductive learning and statistical methods. Expert Systems with Applications, 10(2), 209-221. doi: 10.1016/0957-4174(95)00047-x
Houaiss, A., & Villar, M. de S. (2001). Houaiss Dictionary of the Portuguese Language. Rio de Janeiro: Objetiva.
Kavussanos, M. G., & Tsouknidis, D. A. (2016). Default risk drivers in shipping bank loans. Transportation Research Part E: Logistics and Transportation Review, 94, 71-94. doi: 10.1016/j.tre.2016.07.008
Kozeny, V. (2015). Genetic algorithms for credit scoring: Alternative fitness function performance comparison. Expert Systems with Applications, 42(6), 2998-3004. doi: 10.1016/j.eswa.2014.11.028
Lee, T.-S., Chiu, C.-C., Chou, Y.-C., & Lu, C.-J. (2006). Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis, 50(4), 1113-1130. doi: 10.1016/j.csda.2004.11.006
Li, L., Strahan, P. E., & Zhang, S. (2020). Banks as Lenders of First Resort: Evidence from the COVID-19 Crisis. The Review of Corporate Finance Studies, 9(3), 472-500. doi: 10.1093/rcfs/cfaa009
Neoway (2021). 5 Cs of credit: learn how this credit analysis is applied. Neoway Blog, 2021. Retrieved June 11, 2023, from https://blog.neoway.com.br/5-cs-do-credito-2
Norden, L., Mesquita, D., & Wang, W. (2021). COVID-19, policy interventions and credit: The Brazilian experience. Journal of Financial Intermediation, 48, 100933. doi: 10.1016/j.jfi.2021.100933
Park, C.-Y., & Shin, K. (2021). COVID-19, nonperforming loans, and cross-border bank lending. Journal of Banking & Finance, 106233. doi: 10.1016/j.jbankfin.2021.106233
Ponce, D. (2020). The impact of coronavirus in Brazil: politics and the pandemic. Nature Reviews Nephrology, 16(9), 483. doi: 10.1038/s41581-020-0327-0
Portal do Empreendedor (2022). I want to be an MEI. Retrieved June 19, 2023, from https://www.gov.br/empresas-e-negocios/pt-br/empreendedor
Ramos-Francia, M., & García-Verdú, S. (2022). Central Bank Response to COVID-19. Latin American Journal of Central Banking, 100065. doi: 10.1016/j.latcb.2022.100065
Receita Federal do Brasil (2023). Questions and Answers MEI and Simei [S. L.], 2023. 24 p. Retrieved June 19, 2023, from https://www8.receita.fazenda.gov.br/simplesnacional/arquivos/manual/perguntaomei.pdf
Santos, J. O. (2003). Análise de crédito - empresas e pessoas físicas. 2. ed. São Paulo: Atlas.
Santos, J. O. (2008). Comparative analysis of methods for predicting insolvency in a bank credit portfolio of medium-sized companies. REGE - Revista de Gestão USP, 15, 11-24.
Santos, J. O. d., & Famá, R. (2007). Evaluation of the applicability of a credit scoring model with systemic and non-systemic variables in revolving bank credit portfolios of individuals. Revista Contabilidade & Finanças, 18(44), 105-117. doi: 10.1590/s1519-70772007000200009
Schiozer, R., & Yoshida Jr., V. (2020). Flattening the default curve. GV Executivo, 19(3), 20. doi: 10.12660/gvexec.v19n3.2020.81727
Securato, J. R., & Famá, R. (1997). A procedure for credit decision by banks. Revista de Administração Contemporânea, 1(1), 101-119. doi: 10.1590/s1415-65551997000100006
Sehn, C.F., & Carlini Júnior, R. J. (2007). Default in the housing finance system: a study of the federal savings bank. Revista de Administração Mackenzie, 8(2), 2007.
SEBRAE - Brazilian Micro and Small Business Support Service (2022). Micro and Small Business Statistical Bulletin. São Paulo, 2022. Retrieved June 19, 2023, from www.sebrae.com.br
Serasa Experian. (2022a). Bad debt in Brazil falls for the first time in four years and ends 2020 with 61.4 million people, reveals Serasa Experian. 2022a. Retrieved June 19, 2023, from https://www.serasaexperian.com.br/sala-de-imprensa/noticias/inadimplência-no-brasil-caipela-primeira-vez-em-quatro-anos-e-encerra2020-com-614-milhões-de-pessoas-revelaserasa-experian
Serasa Experian. (2022b). Product manual: Credit Rating Serasa Experian. Retrieved June 19, 2023, from https://www.serasaexperian.com.br/solucoes/credit-rating
Silva, J. J. M., Carvalho Neto, W. J., & Souza, D. S. (2021). The analysis of financial statements as a parameter for granting credit. Caderno de Graduação-Ciências Humanas e Sociais-UNIT-Sergipe, 6(3), 85-98.
WHO - World Health Organization (2022). World Health Statistics: World Health Organization. Retrieved June 19, 2023, from https://www.who.int/data/gho/publications/world-healthstatistics
Zhang, Z., Gao, G., & Shi, Y. (2014). Credit risk evaluation using multi-criteria optimization classifier with kernel, fuzzification and penalty factors. European Journal of Operational Research, 237(1), 335-348. doi: 10.1016/j.ejor.2014.01.044
Ҫolak, G., & Öztekin, Ö. (2021). The impact of COVID-19 pandemic on bank lending around the world. Journal of Banking & Finance, 106207. doi: 10.1016/j.jbankfin.2021.106207
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 REVISTA AMBIENTE CONTÁBIL - Universidade Federal do Rio Grande do Norte - ISSN 2176-9036
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
Os autores mantêm os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Comomns Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
Os autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
Os autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.
A Revista Ambiente Contábil utiliza uma licença Creative Commons CC-BY-NC-ND (Atribuição-NãoComercial – SemDerivações 4.0). Isso significa que os artigos podem ser compartilhados e que a Revista Ambiente Contábil não pode revogar estes direitos desde que se respeitem os termos da licença:
Atribuição: Deve-se dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas.
Não Comercial: Não se pode usar o material para fins comerciais.
Sem Derivações: Se for remixar, transformar ou criar a partir do material, não se pode distribuir o material modificado.
Creative Commons - Atribuição-NãoComercial-SemDerivações 4.0 Internacional