Risk assessment in granting credit by non-financial legal entities

Authors

DOI:

https://doi.org/10.21680/2176-9036.2024v16n2ID34315

Keywords:

Credit assessment by legal entity, Default, Credit score, Rating score

Abstract

Purpose: This study aimed to verify risk assessment procedures when granting credit by a legal entity, via financing, in negotiations with its customers.

Methodology: A documentary approach was used, with an emphasis on qualitative analysis, during the experimental study conducted at an XYZ organization linked to information technology.

Results: They point out that the credit score and rating score, established through the evaluation stages, taking into account the company's history, documentation, guarantees, financial health, cash flow, indebtedness, corporate governance and market prospects, enable the risk classification of their analyzed clients, ranging from AAA for the "alpha" client to D for the "beta" client. This result made it possible to deduce that credit assessment is an appropriate automation in financing decisions for commercial activities, capable of promoting financial flexibility and commercial agility. Customer risk classification is therefore seen as a fundamental tool for improving XYZ's financial decisions, minimizing default risks and guaranteeing the financial security of its commercial operations, resulting from the establishment of risk scores for both defaulting and non-defaulting companies.

Contributions of the Study: This study makes a relevant theoretical contribution to the field of research by highlighting the importance of validating the criteria used in granting financing, as well as the contextual factors that can affect decisions. The practical contribution of analyzing a non-financial institution, including under the pandemic context, and the way in which they minimize their default by establishing credit analysis mechanisms, provides improvements and consequently greater security as lenders.

Downloads

Download data is not yet available.

Author Biographies

Daniele Dias Cardoso, Universidade Federal de Uberlândia - UFU.

Bacharel em Ciências Contábeis pela Universidade Federal de Uberlândia.

Nilton César Lima, Universidade Federal de Uberlândia - UFU

Doutorado e Mestrado em Administração pela Universidade de São Paulo. Especialização em Contabilidade, Auditoria e Legislação Tributária. Graduação em Ciências Contábeis, e em Ciências Econômicas. Atuou por cerca de 15 anos em empresa de tecnologia genética e indústria farmacêutica. Professor Adjunto II da Faculdade de Ciências Contábeis da Universidade Federal de Uberlândia, área Contabilidade Gerencial, onde também é professor do Programa de Pós-graduação em Ciências Contábeis. Linha de pesquisa: Formação de Preços, Custos, Orçamentos, Avaliação de Desempenho Econômico-Financeiro, e Tomadas de Decisões. Avaliador do Inep/MEC.

References

Acharya, V. V., & Steffen, S. (2020). The Risk of Being a Fallen Angel and the Corporate Dash for Cash in the Midst of COVID. The Review of Corporate Finance Studies, 9(3), 430–471. doi: 10.1093/rcfs/cfaa013

Agência Brasil. (2022). Brasil registra 1.023 novos casos e 66 mortes por covid-19 em 24 horas. Recuperado em 14 mai., 2023, de https://agenciabrasil.ebc.com.br/saude/noticia/2022-10/brasil-registra-5986-novos-casos-de-covid-19-em-24-horas

Akkoç, S. (2012). An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish credit card data. European Journal of Operational Research, 222(1), 168–178. doi: 10.1016/j.ejor.2012.04.009

Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589–609. doi: 10.1111/j.1540-6261.1968.tb00843.x

Annibal, C. A. Inadimplência do setor bancário brasileiro: uma avaliação de suas medidas. Working Papers Series, 192. Brasília, DF: Banco Central do Brasil, 2009. Recuperado em 10 mai., 2023, de https://ideas.repec.org/p/bcb/wpaper/192.html

BACEN - Banco Central do Brasil. (2021). Estatísticas Monetárias e de Crédito. Nota para Imprensa em 28/01/2021. Recuperado em 11 jun., 2023, de https://www.bcb.gov.br/content/estatisticas/hist_estatisticasmonetariascredito/202101_Texto_de_estatisticas_monetarias_e_de_credito.pdf

BACEN - Banco Central do Brasil. (2022). Estatísticas Monetárias e de Crédito. Nota para Imprensa em 28/01/2022. Recuperado em 02 mai., 2023, de https://www.bcb.gov.br/content/estatisticas/hist_estatisticasmonetariascredito/202201_Texto_de_estatisticas_monetarias_e_de_credito.pdf

Beck, T., & Keil, J. (2022). Have banks caught corona? Effects of COVID on lending in the U.S. Journal of Corporate Finance, 72, 102160. doi: 10.1016/j.jcorpfin.2022.102160

Berger, A. N. et al. (2021). Is a friend in need a friend indeed? How relationship borrowers fare during the COVID-19 crisis, Working Papers 21-13, Federal Reserve Bank of Philadelphia.

Bianconi, M., Yoshino, J. A., & Machado de Sousa, M. O. (2013). BRIC and the U.S. financial crisis: An empirical investigation of stock and bond markets. Emerging Markets Review, 14, 76–109. doi: 10.1016/j.ememar.2012.11.002

Carvalho, K. W. et al. (2014). A importância da análise das demonstrações contábeis na concessão de crédito. In: SEGET - XI Simpósio de Excelência em Gestão e Tecnologia, 2014, Resende/RJ. Anais do SEGET - XI Simpósio de Excelência em Gestão e Tecnologia.

CNC - Confederação Nacional do Comércio. (2022). Pesquisa de endividamento e inadimplência do consumidor. Brasília, DF. Recuperado em 11 jun., 2023, de https://www.fecomercio.com.br/pesquisas/indice/peic

Dahooie, J. H., Hajiagha, S. H. R., Farazmehr, S., Zavadskas, E. K., & Antucheviciene, J. (2021). A novel dynamic credit risk evaluation method using data envelopment analysis with common weights and combination of multi-attribute decision-making methods. Computers & Operations Research, 129, 105223. doi: 10.1016/j.cor.2021.105223

Dekkers, R., de Boer, R., Gelsomino, L. M., de Goeij, C., Steeman, M., Zhou, Q., Sinclair, S., & Souter, V. (2020). Evaluating theoretical conceptualisations for supply chain and finance integration: A Scottish focus group. International Journal of Production Economics, 220, 107451. doi: 10.1016/j.ijpe.2019.07.024

Dinh, T. H. T., & Kleimeier, S. (2007). A credit scoring model for Vietnam's retail banking market. International Review of Financial Analysis, 16(5), 471–495. doi: 10.1016/j.irfa.2007.06.001

Dursun-de Neef, H. Ö., & Schandlbauer, A. (2022). COVID-19, bank deposits, and lending. Journal of Empirical Finance, 68, 20-33. doi: 10.1016/j.jempfin.2022.05.003

Gong, D., Jiang, T., & Lu, L. (2020). Pandemic and bank lending: Evidence from the 2009 H1N1 pandemic. Finance Research Letters, 39, 101627. doi: 10.1016/j.frl.2020.101627

Goodell, J. W. (2020). COVID-19 and finance: Agendas for future research. Finance Research Letters, 35, 101512. doi: 10.1016/j.frl.2020.101512

Gouvêa, M. A., Gonçalves, E. B., & Mantovani, D. M. N. (2015). Análise de risco de crédito com aplicação de regressão logística e redes neurais. Contabilidade Vista & Revista, 24(4), 96-123.

Han, I., Chandler, J. S., & Liang, T.-P. (1996). The impact of measurement scale and correlation structure on classification performance of inductive learning and statistical methods. Expert Systems with Applications, 10(2), 209–221. doi: 10.1016/0957-4174(95)00047-x

Houaiss, A., & Villar, M. de S. (2001). Dicionário Houaiss da Língua Portuguesa. Rio de Janeiro: Objetiva.

Kavussanos, M. G., & Tsouknidis, D. A. (2016). Default risk drivers in shipping bank loans. Transportation Research Part E: Logistics and Transportation Review, 94, 71–94. doi: 10.1016/j.tre.2016.07.008

Kozeny, V. (2015). Genetic algorithms for credit scoring: Alternative fitness function performance comparison. Expert Systems with Applications, 42(6), 2998–3004. doi: 10.1016/j.eswa.2014.11.028

Lee, T.-S., Chiu, C.-C., Chou, Y.-C., & Lu, C.-J. (2006). Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis, 50(4), 1113–1130. doi: 10.1016/j.csda.2004.11.006

Li, L., Strahan, P. E., & Zhang, S. (2020). Banks as Lenders of First Resort: Evidence from the COVID-19 Crisis. The Review of Corporate Finance Studies, 9(3), 472–500. doi: 10.1093/rcfs/cfaa009

Neoway. (2021). 5 Cs do crédito: saiba como essa análise de crédito é aplicada. Blog Neoway, 2021. Recuperado em 11 jun., 2023, de https://blog.neoway.com.br/5-cs-do-credito-2

Norden, L., Mesquita, D., & Wang, W. (2021). COVID-19, policy interventions and credit: The Brazilian experience. Journal of Financial Intermediation, 48, 100933. doi: 10.1016/j.jfi.2021.100933

Park, C.-Y., & Shin, K. (2021). COVID-19, nonperforming loans, and cross-border bank lending. Journal of Banking & Finance, 106233. doi: 10.1016/j.jbankfin.2021.106233

Ponce, D. (2020). The impact of coronavirus in Brazil: politics and the pandemic. Nature Reviews Nephrology, 16(9), 483. doi: 10.1038/s41581-020-0327-0

Portal do Empreendedor. (2022). Quero ser MEI. Recuperado em 19 jun., 2023, de https://www.gov.br/empresas-e-negocios/pt-br/empreendedor

Ramos-Francia, M., & García-Verdú, S. (2022). Central Bank Response to COVID-19. Latin American Journal of Central Banking, 100065. doi: 10.1016/j.latcb.2022.100065

Receita Federal do Brasil. (2023). Perguntas e Respostas MEI e Simei. [S. L.], 2023. 24 p. Recuperado em 19 jun., 2023, de https://www8.receita.fazenda.gov.br/simplesnacional/arquivos/manual/perguntaomei.pdf

Santos, J. O. (2003). Análise de crédito – empresas e pessoas físicas. 2. ed. São Paulo: Atlas.

Santos, J. O. (2008). Análise comparativa de métodos para previsão de insolvência em uma carteira de crédito bancário de empresas de médio porte. REGE - Revista de Gestão USP, 15, 11-24.

Santos, J. O. d., & Famá, R. (2007). Avaliação da aplicabilidade de um modelo de credit scoring com varíaveis sistêmicas e não-sistêmicas em carteiras de crédito bancário rotativo de pessoas físicas. Revista Contabilidade & Finanças, 18(44), 105–117. doi: 10.1590/s1519-70772007000200009

Schiozer, R., & Yoshida Jr., V. (2020). Achatando a curva da inadimplência. GV Executivo, 19(3), 20. doi: 10.12660/gvexec.v19n3.2020.81727

Securato, J. R., & Famá, R. (1997). Um procedimento para a decisão de crédito pelos bancos. Revista de Administração Contemporânea, 1(1), 101–119. doi: 10.1590/s1415-65551997000100006

Sehn, C.F., & Carlini Júnior, R. J. (2007). Inadimplência no sistema financeiro de habitação: um estudo junto à caixa econômica federal. Revista de Administração Mackenzie, 8(2), 2007.

SEBRAE - Serviço Brasileiro de Apoio às Micro e Pequenas Empresas. (2022). Boletim Estatístico de Micro e Pequena Empresa. São Paulo, 2022. Recuperado em 19 jun., 2023, de www.sebrae.com.br

Serasa Experian. (2022a). Inadimplência no Brasil cai pela primeira vez em quatro anos e encerra 2020 com 61,4 milhões de pessoas, revela Serasa Experian. 2022a. Recuperado em 19 jun., 2023, de https://www.serasaexperian.com.br/sala-de-imprensa/noticias/inadimplência-no-brasil-caipela-primeira-vez-em-quatro-anos-e-encerra2020-com-614-milhões-de-pessoas-revelaserasa-experian

Serasa Experian. (2022b). Manual do produto: Credit Rating Serasa Experian. Recuperado em 19 jun., 2023, de https://www.serasaexperian.com.br/solucoes/credit-rating

Silva, J. J. M., Carvalho Neto, W. J., & Souza, D. S. (2021). A análise das demonstrações financeiras como parâmetro para concessão de crédito. Caderno de Graduação-Ciências Humanas e Sociais-UNIT-Sergipe, 6(3), 85-98.

WHO - World Health Organization. (2022). World Health Statistics: World Health Organization. Recuperado em 19 jun., 2023, de https://www.who.int/data/gho/publications/world-healthstatistics

Zhang, Z., Gao, G., & Shi, Y. (2014). Credit risk evaluation using multi-criteria optimization classifier with kernel, fuzzification and penalty factors. European Journal of Operational Research, 237(1), 335–348. doi: 10.1016/j.ejor.2014.01.044

Ҫolak, G., & Öztekin, Ö. (2021). The impact of COVID-19 pandemic on bank lending around the world. Journal of Banking & Finance, 106207. doi: 10.1016/j.jbankfin.2021.106207

Published

01-07-2024

How to Cite

CARDOSO, D. D. .; LIMA, N. C. Risk assessment in granting credit by non-financial legal entities. REVISTA AMBIENTE CONTÁBIL - Universidade Federal do Rio Grande do Norte, [S. l.], v. 16, n. 2, p. 117–139, 2024. DOI: 10.21680/2176-9036.2024v16n2ID34315. Disponível em: https://periodicos.ufrn.br/ambiente/article/view/34315. Acesso em: 20 dec. 2024.

Issue

Section

Section 1: Accounting Applied to the Business Sector (S1)