Risk assessment in granting credit by non-financial legal entities
DOI:
https://doi.org/10.21680/2176-9036.2024v16n2ID34315Keywords:
Credit assessment by legal entity, Default, Credit score, Rating scoreAbstract
Purpose: This study aimed to verify risk assessment procedures when granting credit by a legal entity, via financing, in negotiations with its customers.
Methodology: A documentary approach was used, with an emphasis on qualitative analysis, during the experimental study conducted at an XYZ organization linked to information technology.
Results: They point out that the credit score and rating score, established through the evaluation stages, taking into account the company's history, documentation, guarantees, financial health, cash flow, indebtedness, corporate governance and market prospects, enable the risk classification of their analyzed clients, ranging from AAA for the "alpha" client to D for the "beta" client. This result made it possible to deduce that credit assessment is an appropriate automation in financing decisions for commercial activities, capable of promoting financial flexibility and commercial agility. Customer risk classification is therefore seen as a fundamental tool for improving XYZ's financial decisions, minimizing default risks and guaranteeing the financial security of its commercial operations, resulting from the establishment of risk scores for both defaulting and non-defaulting companies.
Contributions of the Study: This study makes a relevant theoretical contribution to the field of research by highlighting the importance of validating the criteria used in granting financing, as well as the contextual factors that can affect decisions. The practical contribution of analyzing a non-financial institution, including under the pandemic context, and the way in which they minimize their default by establishing credit analysis mechanisms, provides improvements and consequently greater security as lenders.
Downloads
References
Acharya, V. V., & Steffen, S. (2020). The Risk of Being a Fallen Angel and the Corporate Dash for Cash in the Midst of COVID. The Review of Corporate Finance Studies, 9(3), 430–471. doi: 10.1093/rcfs/cfaa013
Agência Brasil. (2022). Brasil registra 1.023 novos casos e 66 mortes por covid-19 em 24 horas. Recuperado em 14 mai., 2023, de https://agenciabrasil.ebc.com.br/saude/noticia/2022-10/brasil-registra-5986-novos-casos-de-covid-19-em-24-horas
Akkoç, S. (2012). An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish credit card data. European Journal of Operational Research, 222(1), 168–178. doi: 10.1016/j.ejor.2012.04.009
Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589–609. doi: 10.1111/j.1540-6261.1968.tb00843.x
Annibal, C. A. Inadimplência do setor bancário brasileiro: uma avaliação de suas medidas. Working Papers Series, 192. Brasília, DF: Banco Central do Brasil, 2009. Recuperado em 10 mai., 2023, de https://ideas.repec.org/p/bcb/wpaper/192.html
BACEN - Banco Central do Brasil. (2021). Estatísticas Monetárias e de Crédito. Nota para Imprensa em 28/01/2021. Recuperado em 11 jun., 2023, de https://www.bcb.gov.br/content/estatisticas/hist_estatisticasmonetariascredito/202101_Texto_de_estatisticas_monetarias_e_de_credito.pdf
BACEN - Banco Central do Brasil. (2022). Estatísticas Monetárias e de Crédito. Nota para Imprensa em 28/01/2022. Recuperado em 02 mai., 2023, de https://www.bcb.gov.br/content/estatisticas/hist_estatisticasmonetariascredito/202201_Texto_de_estatisticas_monetarias_e_de_credito.pdf
Beck, T., & Keil, J. (2022). Have banks caught corona? Effects of COVID on lending in the U.S. Journal of Corporate Finance, 72, 102160. doi: 10.1016/j.jcorpfin.2022.102160
Berger, A. N. et al. (2021). Is a friend in need a friend indeed? How relationship borrowers fare during the COVID-19 crisis, Working Papers 21-13, Federal Reserve Bank of Philadelphia.
Bianconi, M., Yoshino, J. A., & Machado de Sousa, M. O. (2013). BRIC and the U.S. financial crisis: An empirical investigation of stock and bond markets. Emerging Markets Review, 14, 76–109. doi: 10.1016/j.ememar.2012.11.002
Carvalho, K. W. et al. (2014). A importância da análise das demonstrações contábeis na concessão de crédito. In: SEGET - XI Simpósio de Excelência em Gestão e Tecnologia, 2014, Resende/RJ. Anais do SEGET - XI Simpósio de Excelência em Gestão e Tecnologia.
CNC - Confederação Nacional do Comércio. (2022). Pesquisa de endividamento e inadimplência do consumidor. Brasília, DF. Recuperado em 11 jun., 2023, de https://www.fecomercio.com.br/pesquisas/indice/peic
Dahooie, J. H., Hajiagha, S. H. R., Farazmehr, S., Zavadskas, E. K., & Antucheviciene, J. (2021). A novel dynamic credit risk evaluation method using data envelopment analysis with common weights and combination of multi-attribute decision-making methods. Computers & Operations Research, 129, 105223. doi: 10.1016/j.cor.2021.105223
Dekkers, R., de Boer, R., Gelsomino, L. M., de Goeij, C., Steeman, M., Zhou, Q., Sinclair, S., & Souter, V. (2020). Evaluating theoretical conceptualisations for supply chain and finance integration: A Scottish focus group. International Journal of Production Economics, 220, 107451. doi: 10.1016/j.ijpe.2019.07.024
Dinh, T. H. T., & Kleimeier, S. (2007). A credit scoring model for Vietnam's retail banking market. International Review of Financial Analysis, 16(5), 471–495. doi: 10.1016/j.irfa.2007.06.001
Dursun-de Neef, H. Ö., & Schandlbauer, A. (2022). COVID-19, bank deposits, and lending. Journal of Empirical Finance, 68, 20-33. doi: 10.1016/j.jempfin.2022.05.003
Gong, D., Jiang, T., & Lu, L. (2020). Pandemic and bank lending: Evidence from the 2009 H1N1 pandemic. Finance Research Letters, 39, 101627. doi: 10.1016/j.frl.2020.101627
Goodell, J. W. (2020). COVID-19 and finance: Agendas for future research. Finance Research Letters, 35, 101512. doi: 10.1016/j.frl.2020.101512
Gouvêa, M. A., Gonçalves, E. B., & Mantovani, D. M. N. (2015). Análise de risco de crédito com aplicação de regressão logística e redes neurais. Contabilidade Vista & Revista, 24(4), 96-123.
Han, I., Chandler, J. S., & Liang, T.-P. (1996). The impact of measurement scale and correlation structure on classification performance of inductive learning and statistical methods. Expert Systems with Applications, 10(2), 209–221. doi: 10.1016/0957-4174(95)00047-x
Houaiss, A., & Villar, M. de S. (2001). Dicionário Houaiss da Língua Portuguesa. Rio de Janeiro: Objetiva.
Kavussanos, M. G., & Tsouknidis, D. A. (2016). Default risk drivers in shipping bank loans. Transportation Research Part E: Logistics and Transportation Review, 94, 71–94. doi: 10.1016/j.tre.2016.07.008
Kozeny, V. (2015). Genetic algorithms for credit scoring: Alternative fitness function performance comparison. Expert Systems with Applications, 42(6), 2998–3004. doi: 10.1016/j.eswa.2014.11.028
Lee, T.-S., Chiu, C.-C., Chou, Y.-C., & Lu, C.-J. (2006). Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis, 50(4), 1113–1130. doi: 10.1016/j.csda.2004.11.006
Li, L., Strahan, P. E., & Zhang, S. (2020). Banks as Lenders of First Resort: Evidence from the COVID-19 Crisis. The Review of Corporate Finance Studies, 9(3), 472–500. doi: 10.1093/rcfs/cfaa009
Neoway. (2021). 5 Cs do crédito: saiba como essa análise de crédito é aplicada. Blog Neoway, 2021. Recuperado em 11 jun., 2023, de https://blog.neoway.com.br/5-cs-do-credito-2
Norden, L., Mesquita, D., & Wang, W. (2021). COVID-19, policy interventions and credit: The Brazilian experience. Journal of Financial Intermediation, 48, 100933. doi: 10.1016/j.jfi.2021.100933
Park, C.-Y., & Shin, K. (2021). COVID-19, nonperforming loans, and cross-border bank lending. Journal of Banking & Finance, 106233. doi: 10.1016/j.jbankfin.2021.106233
Ponce, D. (2020). The impact of coronavirus in Brazil: politics and the pandemic. Nature Reviews Nephrology, 16(9), 483. doi: 10.1038/s41581-020-0327-0
Portal do Empreendedor. (2022). Quero ser MEI. Recuperado em 19 jun., 2023, de https://www.gov.br/empresas-e-negocios/pt-br/empreendedor
Ramos-Francia, M., & García-Verdú, S. (2022). Central Bank Response to COVID-19. Latin American Journal of Central Banking, 100065. doi: 10.1016/j.latcb.2022.100065
Receita Federal do Brasil. (2023). Perguntas e Respostas MEI e Simei. [S. L.], 2023. 24 p. Recuperado em 19 jun., 2023, de https://www8.receita.fazenda.gov.br/simplesnacional/arquivos/manual/perguntaomei.pdf
Santos, J. O. (2003). Análise de crédito – empresas e pessoas físicas. 2. ed. São Paulo: Atlas.
Santos, J. O. (2008). Análise comparativa de métodos para previsão de insolvência em uma carteira de crédito bancário de empresas de médio porte. REGE - Revista de Gestão USP, 15, 11-24.
Santos, J. O. d., & Famá, R. (2007). Avaliação da aplicabilidade de um modelo de credit scoring com varíaveis sistêmicas e não-sistêmicas em carteiras de crédito bancário rotativo de pessoas físicas. Revista Contabilidade & Finanças, 18(44), 105–117. doi: 10.1590/s1519-70772007000200009
Schiozer, R., & Yoshida Jr., V. (2020). Achatando a curva da inadimplência. GV Executivo, 19(3), 20. doi: 10.12660/gvexec.v19n3.2020.81727
Securato, J. R., & Famá, R. (1997). Um procedimento para a decisão de crédito pelos bancos. Revista de Administração Contemporânea, 1(1), 101–119. doi: 10.1590/s1415-65551997000100006
Sehn, C.F., & Carlini Júnior, R. J. (2007). Inadimplência no sistema financeiro de habitação: um estudo junto à caixa econômica federal. Revista de Administração Mackenzie, 8(2), 2007.
SEBRAE - Serviço Brasileiro de Apoio às Micro e Pequenas Empresas. (2022). Boletim Estatístico de Micro e Pequena Empresa. São Paulo, 2022. Recuperado em 19 jun., 2023, de www.sebrae.com.br
Serasa Experian. (2022a). Inadimplência no Brasil cai pela primeira vez em quatro anos e encerra 2020 com 61,4 milhões de pessoas, revela Serasa Experian. 2022a. Recuperado em 19 jun., 2023, de https://www.serasaexperian.com.br/sala-de-imprensa/noticias/inadimplência-no-brasil-caipela-primeira-vez-em-quatro-anos-e-encerra2020-com-614-milhões-de-pessoas-revelaserasa-experian
Serasa Experian. (2022b). Manual do produto: Credit Rating Serasa Experian. Recuperado em 19 jun., 2023, de https://www.serasaexperian.com.br/solucoes/credit-rating
Silva, J. J. M., Carvalho Neto, W. J., & Souza, D. S. (2021). A análise das demonstrações financeiras como parâmetro para concessão de crédito. Caderno de Graduação-Ciências Humanas e Sociais-UNIT-Sergipe, 6(3), 85-98.
WHO - World Health Organization. (2022). World Health Statistics: World Health Organization. Recuperado em 19 jun., 2023, de https://www.who.int/data/gho/publications/world-healthstatistics
Zhang, Z., Gao, G., & Shi, Y. (2014). Credit risk evaluation using multi-criteria optimization classifier with kernel, fuzzification and penalty factors. European Journal of Operational Research, 237(1), 335–348. doi: 10.1016/j.ejor.2014.01.044
Ҫolak, G., & Öztekin, Ö. (2021). The impact of COVID-19 pandemic on bank lending around the world. Journal of Banking & Finance, 106207. doi: 10.1016/j.jbankfin.2021.106207
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 REVISTA AMBIENTE CONTÁBIL - Universidade Federal do Rio Grande do Norte
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish in this magazine agree with the following terms:
Authors keep the copyrights and concede the right of its first publication to the magazine. The work piece must be simultaneously licensed on the Creative Commons Attribution Licence which allows the paper sharing, and preserves both the author identity and the right of first publication to this magazine.
Authors are authorized to assume additional contracts separately, to not-exclusively distribution of the paper version published in this magazine (e.g.: publish in institutional repository or as a book chapter), with the author identity recognition and its first publication in this magazine.
Authors are permitted and stimulated to publish and distribute their papers online (e.g.: in institutional repository or on their personal webpage), considering it can generate productive alterations, as well as increase the impact and the quotations of the published paper.
Creative Commons - Atribuição-NãoComercial-SemDerivações 4.0 Internacional.