Estruturalismo na Filosofia da Matemática e a teoria das categorias: Um debate entre Steve Awodey e Geofrey Hellman

Authors

DOI:

https://doi.org/10.21680/1983-2109.2021v28n57ID24120

Keywords:

Estruturalismo, Teoria das Categorias, Fundamentos da Matemática

Abstract

For some years now there has been an interesting debate concerning the ability of category theory to provide an autonomous conceptual framework for a structuralist approach to the philosophy of mathematics. The starting point of the discussion can be referred to Steve Awodey's (1996) paper, in which he suggests that category theory is capable of providing an accurate and flexible notion of 'structure' for the purposes of a structuralist philosophy. Geofrey Hellman (2003), the main proponent of an alternative form of mathematical structuralism (modal structuralism), examined the possibility of such a suggestion and came to a partially negative conclusion. Two main replicas, resulting from diametrically opposed philosophical perspectives, were suggested by Steve Awodey (2004) and Colin Maclarty (2004). We will expose this debate, as well as examine and defend Awodey's position with our own arguments.

Downloads

Download data is not yet available.

References

AWODEY, S. “Structure in mathematics and logic: A categorical perspective”. Em: Philosophia Mathematica, v. 4, n. 3. New York: Oxford University Press, 1996. pp. 209-237.

AWODEY, Steve. “An Answer to Hellman's Question: Does Category Theory Provide a Framework for Mathematical Structuralism?”. Em: Philosophia Mathematica, v. 12, n. 1, New York: Oxford University Press, 2004. pp. 54-64.

BELL, J. “Category Theory and the Foundations of Mathematics”. The British Journal for the Philosophy of Science, Vol. 32, No. 4. [S.L]: Oxford University Press, 1981. pp. 349-358.

BELL, J. “From absolute to local mathematics”. Synthese v 69, [S.L.]: Springer, 1986. pp. 409-426.

BENACERRAF, P. “What numbers could not be”. Em: Philosophical Review, vol. 74, n. 1. Durham: Duke University Press, 1965. pp. 47-73.

CAMPBELL, Howard E. “The structure of arithmetic”. New York : Appleton-Century-Crofts, 1970.

CARTER, Jessica. “Structuralism as a philosophy of mathematical practice”. Em: Synthese v. 163, n. 2, [S.L.]: Springer, 2008. pp. 119-131.

CHANG, C., KEISLER, H. “Model Theory”, 3rd enl. ed. New York: Elsevier, 1990.

DUMMETT, Michael AE. “Frege philosophy of mathematics”. Melksham: Redwood Press Ltda. 1991.

EILENBERG, Samuel. SAUNDERS, Mac Lane. “General Theory of Natural Equivalences”. Em: Transactions of the American Mathematical Society. Vol. 58, No. 2, 1945, pp. 231-294.

FEFERMAN, Solomon. “Categorical foundations and foundations of category theory”. Em: Logic, foundations of mathematics, and computability theory. Dordrecht: Springer, 1977. pp. 149-169.

GROTHENDIECK, Alexandre. “Sur quelques points d'algèbre homologique”. Tohoku Mathematical Journal, Second Series, v. 9, n. 2, 1957. pp. 119-183.

HALE, Bob. “Structuralism's unpaid epistemological debts”. Philosophia Mathematica, v. 4, n. 2. New York: Oxford University Press, 1996.p. 124-147.

HELLMAN, Geoffrey. “Does category theory provide a framework for mathematical structuralism?”. Philosophia Mathematica, v. 11, n. 2, New York: Oxford University Press, 2003. pp. 129-157.

HELLMAN, Geoffrey. “What is categorical structuralism?”. Em: The Age of Alternative Logics. Dordrecht: Springer, 2006. pp. 151-161.

LANDRY, E., MARQUIS, Jean-Pierre. “Categories in Context: Historical, Foundational, and Philosophical”. Em: Philosophia Mathematica, v.13, n.1, New York: Oxford University Press, 2005. pp.1–43

LAWVERE, F. William. “Functorial semantics of algebraic theories”. Proceedings of the National Academy of Sciences of the United States of America, v. 50, n. 5, 1963, p. 869.

LAWVERE, F. William. “The category of categories as a foundation for mathematics”. Em: Proceedings of the conference on categorical algebra. Berlin, Heidelberg, New York: Springer, 1966. p. 1-20.

LAWVERE, F. William. “An elementary theory of the category of sets (long version) with commentary”. Em: Reprints in Theory and Applications of Categories, v. 11, p. 1-35, 2005.

MARQUIS, Jean-Pierre. “From a geometrical point of view: a study of the history and philosophy of category theory”. New York: Springer Science & Business Media, 2008.

MAYBERRY, John. “What is Required of a Foundation for Mathematics?”. Em: Philosophia Mathematica, v. 2, n. 1, New York: Oxford University Press, 1994. pp. 16-35.

MCLARTY, Colin. “Exploring categorical structuralism”. Philosophia Mathematica, v. 12, n. 1, New York: Oxford University Press, 2004. pp. 37-53.

MCLARTY, Colin. “The uses and abuses of the history of topos theory”, British Journal for the Philosophy of Science v41 n.3 ,[S.L]: Oxford University Press, 1990. pp.351–375.

PARSONS, C. “Frege's Theory of Number”. Em: Philosophy in America. Ithaca: Cornell University Press, 1964. pp 180-203.

RESNIK, M. “Mathematics as a Science of Patterns: Ontology and Reference”. Em: Noûs, Vol. 15, No. 4, Special Issue on Philosophy of Mathematics, [S.L]: Wiley, 1981.pp. 529- 550 .

SHAPIRO, S. “Philosophy of Mathematics: Structure and Ontology”. New York: Oxford University Press. 1997.

TSEMENTZIS, Dimitris. “Univalent foundations as structuralist foundations”. Synthese, v. 194, n. 9, [SL]:Springer, 2017 p. 3583-3617.

Published

30-09-2021

How to Cite

SOUZA SARAIVA, I. Estruturalismo na Filosofia da Matemática e a teoria das categorias: Um debate entre Steve Awodey e Geofrey Hellman. Princípios: Revista de Filosofia (UFRN), [S. l.], v. 28, n. 57, p. 66–88, 2021. DOI: 10.21680/1983-2109.2021v28n57ID24120. Disponível em: https://periodicos.ufrn.br/principios/article/view/24120. Acesso em: 23 nov. 2024.